نوشته شده توسط : admin

دانشگاه فردوسی مشهد

دانشکده مهندسی – گروه کامپیوتر

پایان‌نامه کارشناسی ارشد

عنوان:

تلفیق الگوریتم رقابت استعماری و انتخاب سریع زمان آماده­سازی در حل مسأله برنامه­ریزی توالی هواپیماها

(Combination of Imperialist Competitive Algorithm with Earliest Ready Time for Aircraft Sequencing Problem)

استاد راهنما:

دکتر رضا منصفی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

1- مقدمه طرح پیشنهادی……………………………………………………………………………………. 1

1-1- مقدمه………………………………………………………………………………………………….. 2

1-2- طرح موضوع………………………………………………………………………………………… 4

1-3- مفروضات، محدودیت­ها……………………………………………………………………………… 6

1-4- اهداف تحقیق………………………………………………………………………………………. 8

1-5- جنبه­ی جدید بودن و نوآوری………………………………………………………………… 9

1-6- نتایج حاصل از تحقیق…………………………………………………………………………. 9

1-7- ساختار پایان­نامه…………………………………………………………………………………. 10

2- مروری بر کارهای گذشته……………………………………………………………………….. 11

2-1- مقدمه……………………………………………………………………………………………… 12

2-2- توالی فرود هواپیما……………………………………………………………………………. 12

2-3- تخصیص ورودی مسافری…………………………………………………………………… 15

2-4- پیشینه تحقیق………………………………………………………………………………… 17

2-5- مدل برنامه­ریزی خطی برنامه…………………………………………………………….. 21

3- روش پیشنهادی……………………………………………………………………………….. 25

3-1- راه­کار پیشنهادی……………………………………………………………………………… 26

3-2- الگوریتم تکاملی………………………………………………………………………………. 26

3-2-1- مقدمه……………………………………………………………………………………….. 26

3-2-2- علت استفاده از الگوریتم‌های تکاملی……………………………………………… 29

3-2-3- انواع الگوریتم‌های تکاملی………………………………………………………….. 29

3-3- الگوریتم رقابت استعماری……………………………………………………………….. 32

3-3-1- شکل­دهی امپراطوری اولیه………………………………………………………….. 34

3-3-2- مدل‌سازی سیاست جذب……………………………………………………………. 38

3-3-3- جابجایی موقعیت مستعمره و امپرالیسست…………………………………… 41

3-3-4- قدرت کل یک امپراطوری………………………………………………………….. 42

3-3-5- رقابت استعماری………………………………………………………………………… 43

3-3-6- سقوط امپراطوری­های ضعیف………………………………………………………. 46

3-3-7- همگرایی……………………………………………………………………………….. 46

3-4- الگوریتم رقابت استعماری اصلاحی……………………………………………….. 48

3-5- الگوریتم‌های ترکیبی بکار رفته…………………………………………………… 51

4- ارزیابی سیستم…………………………………………………………………………….. 53

4-1- مقدمه…………………………………………………………………………………….. 54

4-2- مدل‌سازی روش پیشنهادی……………………………………………………….. 55

4-3- ارزیابی راه­کار پیشنهادی……………………………………………………………. 56

4-4- مسائل مورد مقایسه…………………………………………………………………. 59

4-4-1- مقایسه نتایج پروازهای ورودی و خروجی به تعداد 15…………………. 59

4-4-2- مقایسه نتایج پروازهای ورودی و خروجی به تعداد 20……………….. 61

4-4-3- مقایسه نتایج پروازهای ورودی و خروجی به تعداد 25………………. 62

5- نتیجه­گیری و ارائه پیشنهاد‌ها……………………………………………………. 64

5-1- جنبه نوآوری…………………………………………………………………………… 65

5-2- نتیجه مقایسه نتایج…………………………………………………………….. 65

5-3- پیشنهاد‌ها……………………………………………………………………………. 66

6- مراجع ………………………………………………………………………………….67

چکیده:

مدیریت ترافیک هوایی یکی از مشاغل حساس و پراسترس است که همه‌روزه با مشکلات و موانع مختلفی روبه­رو می­شود و مسأله توالی هواپیما (Aircraft Sequencing Problem) یکی از مهم­ترین مسائلی است که این روزها در حوزه کاری مراقبت پرواز (Air Traffic Control) به آن پرداخته می­شود.

مسأله توالی هواپیما یک مسأله NP-سخت است، الگوریتم­های دقیق کارایی خود را بر روی این مسأله در ابعاد بالا از دست می­دهند و نمی­توانند به جواب بهینه در یک‌زمان قابل‌قبول دست یابند؛ درنتیجه امروزه برای حل این­گونه مسائل از الگوریتم­های ابتکاری و فرا ابتکاری استفاده می­شود.

در این پایان‌نامه سعی شده با تلفیق الگوریتم ERT(Earliest Ready Time) جهت انتخاب بهترین هواپیمای آماده عملیات با الگوریتم استعماری اصلاحی که از روش نزدیک­ترین همسایه تصادفی برای تابع جذب در کنار روش بهبود­دهنده سه­نقطه­ای برای تابع انقلاب استفاده کرده، روش جدیدی در حل مسأله توالی هواپیما ارائه شود. نتایج حاصل از پیاده‌سازی این الگوریتم نشان می­دهد که در مقایسه با سایر الگوریتم­ها از کارایی بالایی برخوردار است.

فصل اول: مقدمه طرح پیشنهادی

1-1- مقدمه

یکی از موضوعات موردتوجه در صنعت هوانوردی، مبحث برنامه­ریزی فرود هواپیماهای ورودی به فرودگاه است. با ورود هواپیماهای مختلف به محدوده­ی راداری فرودگاه، مراقبین پرواز در برج مراقبت باید ترتیب فرود هواپیماهایی که در آن لحظه در آسمان فرودگاه در حال پرواز هستند را مشخص نمایند. برای اختصاص چنین ترتیب فرودی محدودیت­های مختلفی موردتوجه قرار­می­گیرد که از آن جمله می‌توان به محدودیت جداسازی دو هواپیما اشاره نمود. این محدودیت از دیدگاه مباحث آئرودینامیک اهمیت زیادی دارد و در صورت عدم رعایت آن امکان بروز حادثه برای هواپیماهای متوالی وجود دارد.

مهم­ترین نتیجه­ی موردنظر برنامه­ریزی فرود هواپیماها، کمینه کردن تأخیرها است که از ایجاد هزینه­ی سوخت اضافه برای هواپیماها و همین‌طور ایجاد نارضایتی مسافران جلوگیری می‌کند. ازآنجایی‌که هزینه­های مربوط به سوخت ناوگان پروازی درصد قابل‌توجهی از هزینه­های شرکت‌های هواپیمایی را شامل می­شود، برنامه­ریزی فرود هواپیماها موردتوجه شرکت‌های هواپیمایی و همچنین شرکت‌های فرودگاهی قرارگرفته است. همین امر باعث شده است که اغلب فرودگاه­هایی که عملکرد بهتری در خصوص مدیریت ترافیک پروازی دارند، توجه شرکت‌های هواپیمایی بیشتری را به خود جلب کنند. از سوی دیگر، در صورت دستیابی به عملکردی مناسب در مدیریت ترافیک پروازها، شرکت‌های فرودگاهی این امکان را خواهند داشت که در بازه زمانی ثابت، پذیرای تعداد بیشتری از هواپیما باشند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 595
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه صنعتی شاهرود

دانشکده مهندسی کامپیوتر و فناوری اطلاعات

پایان نامه جهت اخذ درجه کارشناسی ارشد

گروه هوش مصنوعی

عنوان:

استخراج ویژگی مناسب برای تشخیص سیگنال­های حرکات ارادی EEG

اساتید راهنما:

دکتر علی اکبر پویان

استاد مشاور:

دکتر کاویان قندهاری

دکتر هادی گرایلو

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول

مقدمه.

1-1-  مقدمه……………………………… 1

1-2-  تاریخچه BCI…………………………….

1-3-  کاربردهای BCI…………………………….

1-4-  تعریف مساله…………………………….. 7

1-5   – ساختار پایان نامه…………………………….. 7

فصل دوم

سیگنالهای مغزی………………………………

2-1- مقدمه…………………………….. 9

2-2- کشف سیگنالهای مغزی……………………………… 10

2-3- ثبت سیگنالهای مغزی……………………………… 11

2-4- پیش پردازشها روی سیگنالهای مغزی……………………………… 12

فصل سوم

مروری بر تحقیقات انجام شده در زمینه دسته بندی سیگنالهای مغزی…………….

3-1- مقدمه…………………………….. 16

3-2- معرفی داده ­های موجود…………………………….. 17

3-2-1- مشخصات دادههای ثبت شده توسط گروه دانشگاهColorado……………..

3-2-2- مشخصات داد ههای ثبت شده توسط گروه Graz……………………………..

3-2-3- مشخصات دادههای MIT-BIH……………………………….

3-3- استخراج ویژگی……………………………… 20

3-4- دسته بندی……………………………… 23

فصل چهارم.

مقایسه تحلیلی تبدیل فوریه ، موجک و والش  

4-1- مقدمه…………………………….. 25

4-2- تبدیل فوریه…………………………….. 25

4-3- تبدیل موجک……………………………….. 30

4-3-1- مقیاس…………………………….. 32

4-4- تاریخچه تبدیل والش……………………………….. 35

4-4-1- توابع والش………………………………… 35

4-4-2- تبدیل والش………………………………… 36

فصل پنجم

توصیف روش پیشنهادی 

5-1- مقدمه…………………………….. 40

5-2- پایگاه داده مورد استفاده……………………………. 40

5-3- حذف نویز…………………………….. 42

5-3-1- آنالیز مولفه های مستقل……………………………… 43

5-3-2- حذف نویز با استفاده از آنالیز مولفه های مستقل…………. 44

5-3-3- حذف نویز با استفاده از تبدیل موجک……………………………….. 46

5-3-4- حذف نویز با استفاده از تبدیل والش………………………………… 47

5-3-5- حذف نویز با استفاده از روش ترکیبی تبدیل والش و ICA……………

5-4- استخراج ویژگی……………………………… 51

5-4-1- آنتروپی …………………………….  52

5-4-2- استخراج ویژگی با استفاده از تبدل والش………………. 53

5-4-3- استخراج ویژگی با استفاده تبدیل فوریه و موجک……………. 53

5-5- ماشین بردار پشتیبان (Support Vector Machin)…………………………….

5-5-1- ابر صفحه جداساز…………………………….. 55

5-5-2- جداسازی غیر خطی………………………………. 58

فصل ششم

نتایج و نتیجه گیری………………………………

6-1- مقدمه…………………………….. 60

6-2- حذف نویز…………………………….. 61

6-3- معیارهای ارزیابی……………………………… 65

6-3-1- نسبت سیگنال به نویز (Signal to Noise Rate)…………………………….

6-3-2- میانگین مربع خطا (Mean Square Error)…………………………….

6-3-3- جذر میانگین تفاضل مربعات(درصد)(Percentage Root Mean Square Difference)………..

6-4- استخراج ویژگی……………………………… 68

6-4-1- ویژگیهای تبدیل والش………………………………… 69

6-4-2- ویژگیهای تبدیل فوریه…………………………….. 72

6-4-3- ویژگیهای تبدیل موجک……………………………….. 76

6-5- مقایسه با کارهای مرتبط بر روی این مجموعه داده………….. 80

6-6- نتیجه گیری……………………………… 83

6-7- پیشنهاد ها……………………………. 85

منابع:………………………………. 86

چکیده:

در این پایان­نامه قصد داریم با ارائه یک ویژگی مناسب عمل دسته بندی را بر روی سیگنال­های مغزی انجام دهیم. برای این منظور ابتدا از سیگنالهای مغزی نویز دستگاه ثبت حذف می شود سپس از این سیگنال­­ها با استفاده از تبدیل والش و آنتروپی ویژگی استخراج می شود. بعد از استخراج ویژگی ، بر اساس این ویژگی­ها عمل دسته بندی انجام می شود.

اولین پیش پردازش برای دسته بندی سیگنال­های مغزی حذف نویز از این سیگنال­ها می­باشد. در این پایان­نامه دو روش کلاسیک حذف نویز و دو روش پیشنهادی حذف نویز بررسی می­شود. ابتدا با استفاده از روش کلاسیک ICA ، تبدیل موجک و دو روش پیشنهادی تبدیل والش و روش ترکیبی والش و ICA از سیگنال حذف نویز می­شود. برای داشتن یک ارزیابی از این چند روش، نتایج حاصل از این چهار روش با استفاده از سه معیار، نسبت سیگنال به نویز(SNR)، میانگین مربع خطا(MSE) و جذر میانگین تفاضل مربعات(درصد) (PRD) ارزیابی می­شود. نتایج ارزیابی با استفاده از این معیار­ها نشان داد که روش ترکیبی والش و ICA و تبدیل والش دارای کمترین مقدار میانگین مربع خطا می­باشد. همچنین این دو روش دارای بیشترین مقدار نسبت سیگنال به نویز و جذر میانگین تفاضل مربعات(درصد) است.

بعد از حذف نویز از سیگنال، به بحث استخراج ویژگی از سیگنال­ها و دسته بندی آنهاپرداخته می­شود. ویژگی­های استخراج شده تعداد ویژگی کمی می باشد و یک بردار ویژگی 22 مولفه ای است. این ویژگی ها مربوط به آنتروپی تبدیل والش کانال های سیگنال، آنتروپی تبدیل والش کل سیگنال، توان تبدیل والش کانال های سیگنال و توان تبدیل والش کل سیگنال می­باشد. برای ارزیابی کارایی این ویژگی­ها همین ویژگی­ها، نیز با استفاده از تبدیل موجک و فوریه استخراج می­شوند و عمل دسته بندی بر اساس ویژگی­های استخراجی این سه روش به طور جداگانه انجام می­شود. بعد از استخراج ویژگی، بر اساس ویژگی­های استخراجی، به دسته بندی سیگنال­ها با استفاده از طبقه بندی کننده SVM و نزدیکترین همسایه پرداخته می شود. نتایج حاصل نشان می­دهد که دسته بندی با استفاده از ویژگی­های استخراجی تبدیل والش به مراتب بهتر از دسته بندی بر اساس ویژگی­های دو تبدیل دیگر است. نرخ تشخیص با استفاده از روش پیشنهادی و svm، 42.5 درصد و با روش نزدیکترین همسایه 39.0 درصد است.

در مقایسه ای دیگر، نتایج حاصل با نتایج پیاده سازی شده بر روی این مجموعه داده، در چهارمین دوره مسابقات BCI مقایسه شده است. نتایج نشان داد که روش دسته بندی با استفاده از تبدیل والش از همه­ی روشها به جز نفر اول بهتر است.. ولی مزیتی که روش پیشنهادی نسبت به همه روشها دارد این است که در بحث زمانی این روش دارای مجموع زمان تست و آموزش کمی است. این زمان 52 ثانیه می باشد که نسبت به روش اول که 403 و 640 ثانیه است به مراتب بهتر است.

فصل اول: مقدمه

1-1- مقدمه

تعامل انسان با کامپیوتر (HCI)[1] امروزه کاربردهای گسترده ای دارد. این رشته علم بررسی تعامل کامپیوتر و انسان است. در واقع این علم نقطه تقاطع دانش کامپیوتر، علوم رفتارشناسی طراحی و چند علم دیگر است. ارتباط و تعامل کامپیوتر وانسان از طریق واسط اتفاق می‌افتد. که شامل نرم‌افزار و سخت‌افزار است. یک تعریف دقیق آن چنین است:

علم تعامل کامپیوتر و انسان یک رشته مرتبط با طراحی ارزیابی و پیاده سازی سیستم‌های محاسباتی متقابل برای استفاده انسان در مطالعه پدیده‌های مهم پیرامون اوست. این رشته شاخه‌هایی از هر دو طرف درگیر را شامل می‌شود مثلا گرافیک کامپیوتری، سیتم‌های عامل، زبان­هایی برنامه نویسی، تئوری ارتباطات و طراحی صنعتی برای قسمت کامپیوتری زبان‌شناسی، روانشناسی و کارایی انسان برای قسمت انسانی آن. این رشته به شاخه های زیادی تقسیم می­شود که یکی از آنها واسط مغز و کامپیوتر(BCI)[2] است.

مغز انسان توانایی انتشار امواجی الکتریکی و مغناطیسی را دارد که می توان با ثبت آنها علاوه بر کاربردهای پردازشی به تشخیص برخی بیماری­ها و حتی برقراری ارتباط به صورت تلپاتی پرداخت. یکی از روش­های ثبت این سیگنالها EEG)) [3] می­باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 814
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

دانشـکده مهندسـی

پایان‌نامه کارشناسی ارشد در رشته مهندسی کامپیوتر (هوش مصنوعی)

عنوان:

ارائه یک مدل جدید یادگیری به منظور آموزش طبقه‌بندی‌ کننده‌های سریال

استاد راهنما:

دکتر رضا بوستانی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده:

امروزه ایجاد و آموزش بهینه دسته‌بندی‌کننده های مستحکم و سریع به یکی از مهمترین دغدغه‌های علم هوش مصنوعی و به ویژه حوزه یادگیری ماشین بدل شده است. با رشد روز افزون در حجم و سرعت تولید داده، نیاز به تولید دسته‌بندی‌کننده‌های دقیق و سریع بیش از پیش حس می شود و در واقع یک چالش محسوب می شود. روش‌های یادگیری جمعی طی سالیان اخیر اثبات کرده‌اند که برای رفع مشکلات یاد شده گزینه‌های مناسبی هستند.

روش‌های یادگیری جمعی، گروهی از مدل های ضعیف را تولید می‌کنند که با تلفیق مناسب و هوشمندانه خروجی آنها می توان به یک دسته‌بندی‌کننده قوی دست یافت. این روش‌ها زمانی که از الگوریتم‌های تقویتی در ساختار سریال بهره می‌برند، کارایی به مراتب بالاتری از خود نشان می‌دهند.

استفاده از شیوه تقسیم-و-تسخیر یا همان separate-and-conquer در زمان آموزش هر لایه از ساختار سریال، دلیل قدرت یادگیر‌های جمعی سریال می‌باشد؛ علاوه بر آن، تعیین مرزهای تصمیم موارد جزیی در دور‌های نخست ساختار سریال انجام می‌شود و در دور‌های آتی این مرز پالایش شده و موارد سخت‌تر را در بر خواهد گرفت. عملکرد مدل کلاسیک ساختار سریال، در مواجهه با مسائل دوکلاسه، به این صورت است که نمونه‌های غیر هدف که در لایه‌های اولیه یاد گرفته می‌شوند از سیستم حذف شده و با نمونه‌های سخت‌تر جایگزین می‌شوند؛ که می‌توان از این استراتژی با نام bootstrapping یاد کرد. با این روند، یادگیری بهینه کلان-به-جزیی یا همان learning coarse-to-fine حاصل می‌شود.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 707
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

پایان نامه دوره کارشناسی ارشد مهندسی کامپیوتر(هوش مصنوعی)

عنوان:

استفاده از کاربرانی با دقت پیشگویی بالا در سیستم­های فیلترینگ اشتراکی

استاد راهنما:

جناب آقای دکتر منصور ذوالقدری جهرمی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل 1 : مقدمه­……………………………………………………………………………………………………………………………1

1-1- پیشگفتار…………………………………………………………………………………………………………………………….2

1-2- موتورهای جستجوگر…………………………………………………………………………………………………………2

1-2-1- موتورهای جستجوگر پیمایشی……………………………………………………………………………………..3

1-2- 2- فهرست­های تکمیل دستی…………………………………………………………………………………………..3

1-2-3- موتورهای جستجوگر ترکیبی………………………………………………………………………………………..4

1-2-4- ابرجستجوگرها……………………………………………………………………………………………………………….4

1-3- سیستم­های پیشنهادگر……………………………………………………………………………………………………..5

1-3-1- سیستم پیشنهادگر بر اساس فیلترینگ اشتراکی…………………………………………………………7

1-3-2- سیستم پیشنهادگر بر اساس محتوا………………………………………………………………………………8

1-3-3- سیستم پیشنهادگر بر اساس آمار گیری……………………………………………………………………….8

1-3-4- سیستم پیشنهادگر بر اساس سود…………………………………………………………………………………9

1-3-5- سیستم پیشنهادگر بر اساس دانش………………………………………………………………………………9

1-3-6- سیستم پیشنهادگر ترکیبی…………………………………………………………………………………………..9

1-4- بررسی سایت MovieLens…………………………………………………………………………………………..

1-5- اهداف پایان نامه……………………………………………………………………………………………………………..13

1-6- ساختار پایان نامه…………………………………………………………………………………………………………….14

فصل 2 : روش فیلترینگ اشتراکی……………………………………………………………………………………………15

2-1- پیشگفتار………………………………………………………………………………………………………………………….16

2-2- مروری بر کارهای انجام شده در این راستا……………………………………………………………………..16

2-3- مبانی فیلترینگ اشتراکی………………………………………………………………………………………………..21

2-4- وظایف فیلترینگ اشتراکی…………………………………………………………………………………………….22

2-4-1- پیشنهاد……………………………………………………………………………………………………………………….23

2-4-2- پیش­بینی…………………………………………………………………………………………………………………….23

2-5- دسته بندی متدهای فیلترینگ اشتراکی……………………………………………………………………….23

2-5-1- فیلترینگ اشتراکی مبتنی بر حافظه…………………………………………………………………………24

2-5-1-1- فیلترینگ اشتراکی مبتنی بر حافظه با پیش­بینی بر اساس کاربران…………………….25

2-5-1-2- فیلترینگ اشتراکی مبتنی بر حافظه با پیش­بینی بر اساس اقلام…………………………25

2-5-1- 3- تفاوت فیلترینگ اشتراکی بر اساس کاربران و بر اساس اقلام……………………………..26

2-5-2- فیلترینگ اشتراکی مبتنی بر مدل……………………………………………………………………………..26

2-6- نحوه­ تشخیص علائق کاربران………………………………………………………………………………………….27

2-6-1- تشخیص علائق به صورت صریح…………………………………………………………………………………27

2-6-2- تشخیص علائق به صورت ضمنی……………………………………………………………………………….27

2-7- محاسبه­ شباهت……………………………………………………………………………………………………………….28

2-7-1- معیار همبستگی پیرسون……………………………………………………………………………………………28

2-7-2- معیار اندازه­گیری کسینوس………………………………………………………………………………………..29

2-8- انتخاب همسایه……………………………………………………………………………………………………………….30

2-8-1- استفاده از حد آستانه………………………………………………………………………………………………….30

2-8-2- انتخاب تعداد ثابتی از همسایگان……………………………………………………………………………….30

2-9- پیش­بینی و تخمین رتبه…………………………………………………………………………………………………31

2-9-1- استفاده از امتیازهای خام……………………………………………………………………………………………31

2-9-2- استفاده از امتیازهای نرمال شده………………………………………………………………………………..31

2-10- مشکلات فیلترینگ اشتراکی………………………………………………………………………………………..32

2-10-1- پراکنده بودن داده…………………………………………………………………………………………………….32

2-10-2- مقیاس پذیری………………………………………………………………………………………………………….32

2-10-3- اقلام مشابه……………………………………………………………………………………………………………….33

2-10-4- گری­شیپ…………………………………………………………………………………………………………………33

2-11- بررسی چگونگی کارکرد سایت آمازون…………………………………………………………………………33

فصل 3 : روش محتوا محور………………………………………………………………………………………………………36

3-1- پیشگفتار………………………………………………………………………………………………………………………….37

3-2- روند کار روش محتوا محور……………………………………………………………………………………………..37

3-2-1- تحلیل­گر محتوا…………………………………………………………………………………………………………..38

3-2-2- یادگیرنده نمایه …………………………………………………………………………………………………..39

3-2-3- جزء فیلترینگ…………………………………………………………………………………………………………….42

3-3- مزایای روش محتوا محور………………………………………………………………………………………………..42

3-3-1- استقلال کاربر……………………………………………………………………………………………………………..42

3-3-2- شفافیت……………………………………………………………………………………………………………………….42

3-3-3- قلم جدید…………………………………………………………………………………………………………………….43

3-4- معایب روش محتوا محور…………………………………………………………………………………………………43

3-4-1- کمبود محتوا……………………………………………………………………………………………………………….43

3-4-2- خصوصی سازی افزون…………………………………………………………………………………………………43

3-4-3- کاربر جدید………………………………………………………………………………………………………………….44

فصل 4 : روش پیشنهادی………………………………………………………………………………………………………….45

4-1- پیشگفتار………………………………………………………………………………………………………………………….46

4-2- مروری بر کارهای انجام شده در این راستا……………………………………………………………………..46

4-3- مقدمه­ای بر روش پیشنهادی…………………………………………………………………………………………..48

4-4- روش پیشنهادی………………………………………………………………………………………………………………48

4-4-1- پیش­ پردازش………………………………………………………………………………………………………………49

4-4-1-1- پیش پردازش بر روی پایگاه داده MovieLens………………………………………………………………….

4-4-1-2- پیش پردازش بر روی پایگاه داده EachMovie………………………………………………………………..

4-4-2- وزن­دهی به اقلام…………………………………………………………………………………………………………51

4-4-3- انتخاب­همسایگی…………………………………………………………………………………………………………53

4-4-4- پیش­بینی……………………………………………………………………………………………………………………54

فصل 5 : آزمایش­ها و نتایج……………………………………………………………………………………………………….56

5-1- پایگاه داده­های مورد استفاده…………………………………………………………………………………………..57

5-2- نحوه­ اجرای روش پیشنهادی روی پایگاه داده­ MovieLens……………………………………………………..

5-3- نحوه­ اجرای روش پیشنهادی روی پایگاه داده ٍEachMovie……………………………………………………

5-4- معیارهای­ارزیابی………………………………………………………………………………………………………………58

5-4-1- میانگین خطای مطلق…………………………………………………………………………………………………58

5-4-2- دقت و فراخوانی………………………………………………………………………………………………………….59

5-4-3- معیار ارزیابیF1…………………………………………………………………………………………………………60

5-5- ارزیابی روش پیشنهادی توسط معیارهای معرفی شده…………………………………………………..61

فصل 6 : بحث و نتیجه­ گیری…………………………………………………………………………………………………….66

6-1- بحث…………………………………………………………………………………………………………………………………67

6-2- نتیجه­گیری……………………………………………………………………………………………………………………..67

6-4- پیشنهادات……………………………………………………………………………………………………………………….68

مراجع………………………………………………………………………………………………………………………………..69

چکیده:

سیستم­های پیشنهادگر ابزارهای نرم افزاری و تکنیک­هایی هستند که اقلام را مطابق با نیاز کاربر به او معرفی می­کنند. روش­های محتوا محور و فیلترینگ اشتراکی از راهکارهای موفق در سیستم­های پیشنهادگر می­باشند. روش محتوا محور بر اساس ویژگی­های اقلام تعریف می­شود. این روش بررسی می­کند که اقلام مورد علاقه کاربر دارای چه ویژگی­هایی بوده­اند، سپس اقلام دارای ویژگی­های مشابه را به او پیشنهاد می­کند. روش فیلترینگ اشتراکی بر اساس تعیین اقلام مشابه یا کاربران مشابه کار می­کند که به ترتیب فیلترینگ اشتراکی مبتنی بر اقلام و مبتنی بر کاربران نامیده می­شود. در این پایان نامه یک روش تلفیقی از روش­های فیلترینگ اشتراکی و محتوا محور ارائه شده است. این روش می­تواند به عنوان روش فیلترینگ اشتراکی مبتنی بر کاربر در نظر گرفته شود. به این صورت که به منظور یافتن کاربرانی با سلیقه مشابه با کاربر فعال به عنوان کاربرانی با دقت پیشگویی بالا از ویژگی­های مربوط به محتوای اقلام برای افزایش تاثیر امتیاز­هایی که توسط کاربران به اقلام مشابه تخصیص داده شده است استفاده می­کند. به بیان دیگر دو کاربر مشابه هستند در صورتی که امتیاز­هایی که به اقلامی که از نظر محتوا مشابه هستند نسبت داده­اند، همسان باشند. برای این منظور در هنگام سنجیدن شباهت دو کاربر، به امتیاز نسبت داده شده به هر قلم، با توجه به میزان شباهت آن به قلم هدف، وزن تخصیص می­ یابد.

فصل اول

1- مقدمه

1-1- پیشگفتار

پیدایش اینترنت و وب جهان گستر[1] موجب شده است که در رابطه با هر موضوع قابل تصور، حجم بسیار زیادی از اطلاعات وجود داشته باشد که کاربران[2] بتوانند با استفاده از آن نیاز اطلاعاتی خود را برطرف سازند. افزایش روز افزون اطلاعات باعث شد که مشکل سربار اطلاعات[3] به وجود آید و کاربران به تنهایی قادر به برطرف کردن نیازهای خود نباشند. . زیرا کاربران مجبور بودند به صورت بر خط[4] تمامی صفحات را جستجو کنند تا بتوانند آن قسمتی را که مورد نیازشان است پیدا کنند. به همین دلیل موتورهای جستجوگر[5] به وجود آمدند تا کاربران بتوانند با استفاده از آنها بدون نیاز به بررسی تعداد زیادی از صفحات به اطلاعات مورد نظرشان دسترسی پیدا کنند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 625
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

چکیده:

همگام با پیشرفت تکنولوژی نیاز به سیستم های بازشناسی به هنگام چهره به طور فزاینده ای رو به گسترش می باشد. این امر کلاسه‌بندی‌های متعارف و معمول در زمینه بازشناسی چهره را با چالشهایی مواجه ساخته است. زمان آموزش طولانی، پیکربندی و ساختار ثابت کلاسه بندی های موجود و عدم وجود توانایی در یادگیری نمونه های جدید بدون فراموش کردن نمونه های قبلی، از اهم این موارد می باشد. ایده استفاده از شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی می تواند این چالشها را تا حد زیادی مرتفع کند. این برتری ها به دلیل خصوصیات ذاتی و پویاییهای این نوع از شبکه های عصبی می باشد. نتایج شبیه سازی‌ها حکایت از برتری نسبی اما کمرنگ صحت کلاسه بندی در شبکه های عصبی پرسپترون چند لایه، نسبت به شبکه های عصبی مذکور دارند. سرعت یادگیری در شبکه های مذکور بسیار بیشتر از پرسپترون چند لایه بوده و تنظیم پارامترهای آن بسیار ساده تر می باشد. انتخاب پارامتر مراقبت به عنوان مهمترین پارامتر شبکه های مذکور، تقریباً در نیمی از بازه مجاز آن، عملکرد بهینه شبکه را تضمین می کند. همچنین انتخاب ویژگی های موثر با استفاده از الگوریتم ژنتیک و شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی، درصد صحت کلاسه بندی را به طور قابل توجهی افزایش داده است.

پیشگفتار:

یکی از مسائل قدیمی و چالش برانگیز در زمینه هوش مصنوعی، موضوع بازشناسی چهره می باشد. قدمت تحقیقات در این زمینه مربوط به دهه هفتاد میلادی می باشد.علیرغم تحقیقات فراوانی که در حواشی این مسئله صورت گرفته، همواره عرصه های تازه و بکر برای پژوهش وجود داشته است. در حال حاضر محققین با زمینه های کاری کاملاً متفاوت اعم از روانشناسی، بازشناسی الگو،شبکه های عصبی، بینایی ماشین و گرافیک، با انگیزه های متفاوت در این رابطه فعالیت می کنند. در پایان نامه حاضر پس از طرح یک سری چالشهای موجود در زمینه بازشناسی چهره با رویکردی مبتنی بر بکارگیری دسته ای خاص از شبکه های عصبی مصنوعی به عنوان کلاسه بند، سعی شده چالشهای مذکور تا حد امکان مرتفع شود.

اکثر کلاسه بندی های مدرن الگو، نظیر شبکه های عصبی پرسپترون چند لایه[1] و ماشین بردارهای[2] پشتیبان در فاز آموزش عموماً نیاز به صرف بازه های زمانی طولانی داشته و همچنین بار محاسباتی سنگینی به سیستم تحمیل می کنند. امروزه در بسیاری از موارد، بخصوص در سیستم های امنیتی مدرن فرودگاه ها، ترمینالها و غیره، رویکردهای مبتنی بر تشخیص و بازشناسی به هنگام[3] چهره، به شکل فزاینده ای رو به گسترش می باشد. بنابراین نیاز به طبقه بندی های سریع و دقیق با بار محاسباتی و الگوریتمی پایین برای چنین کاربردهایی اجتناب ناپذیر می باشد. بعلاوه در چنین سیستم هایی علاوه بر اینکه یادگیری اولیه بر روی دسته ای از داده ها به صورت یکجا انجام می شود، نیاز به نوعی یادگیری افزایشی نیز وجوددارد تا علاوه بر یادگیری فضای نمونه های اولیه، تغییرات و پویاییهای فضای نمونه ها نیز، برای کلاسه بند، قابل یادگیری بوده و قابلیت رشد و ارتقاء آموزش برای سیستم فراهم می باشد. برای مثال یک سیستم بازشناسی چهره در یک فرودگاه بین المللی را در نظر بگیرید که در ابتدا برای تشخیص هویت یک سری از افراد خاص با سابقه جرایم تروریستی، آموزش دیده است. آنچه واضح است با گذشت زمان مشخصه های چهره افراد ثابت نمانده و همچنین بازشناسی چهره مجرمین جدید نیز اجتناب ناپذیر می نماید. به دلایل ذکر شده، سیستم بازشناسی بایستی بدون فراموش کردن نمونه هایی که قبلاً دیده است، قابلیت به روزرسانی یادگیری و بازشناسی چهره های جدید را نیز داشته باشد.

در این پایان نامه سعی شده با بررسی مزایای ذاتی نوع خاصی از شبکه های عصبی مصنوعی مبتنی بر الگوریتم رزونانس تطبیقی[4] و استفاده از آنها بعنوان کلاسه بند در بازشناسی چهره، چالشهای مذکور تا حدی مرتفع شود. همچنین با استفاده از الگوریتم های تکاملی نظیر الگوریتم ژنتیک[5] و شبکه های مذکور، روشی کارا جهت انتخاب ویژگیهای مؤثر چهره در بازشناسی، پیشنهاد شده است.

اهداف کلی این پروسه تحقیقاتی به شرح ذیل می باشد:

– استفاده از شبکه های عصبی مصنوعی مبتنی بر الگوریتم رزونانس تطبیقی در بازشناسی چهره با توجه به مزایای ذاتی این نوع شبکه ها

– اصلاح یک سری چالشهای خاص در حیطه بازشناسی چهره با استفاده از این ویژگیها

– مقایسه کارایی شبکه های مذکور با شبکه های عصبی پرسپترون چند لایه در بازشناسی چهره.

– ارائه روشی جدید برای انتخاب ویژگیهای مؤثر در بازشناسی چهره با استفاده از شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی و الگوریتم ژنتیک

– ارائه پیشنهاداتی برای ادامه کار با توجه به پتانسیل ها و دینامیک های ذاتی این نوع شبکه ها.

پایان نامه حاضر دارای چهار فصل می باشد. در فصل اول کلیاتی از روشهای بازشناسی چهره بیان شده و در ادامه به بحث راجع به یک سری چالشها در کلاسه بندی‌های پرکاربرد در حیطه بازشناسی چهره پرداخته شده است. در ادامه با بیان مختصر و اجمالی تعدادی از خصوصیات ذاتی شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی، مزایای احتمالی آنها در رفع چالشهای موجود بیان شده است. در فصل دوم، تاریخچه، الگوریتم، پیکربندی و انواع مختلف شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی به تفصیل بیان شده است. همچنین به یک سری از کاربردهای پیشین این شبکه ها به صورت خلاصه و تیتروار اشاره شده است. فصل سوم اختصاص به نتایج آزمایشات و شبیه سازیهای انجام شده دارد. آزمایشها در سه دسته مجزا انجام شده اند. در فصل چهارم که فصل نهایی می باشد،‌ کلیه مطالب بیان شده جمع بندی شده و پیشنهاداتی جهت ادامه روند پژوهشی دراین زمینه ارائه شده است.

فصل اول: کلیات

1-1- مقدمه

در این بخش پس از طرح کلیاتی از مسئله بازشناسی چهره، با تمرکز بر مسئله طبقه بندها به بیان برخی چالشهای موجود در این زمینه پرداخته شده است. در ادامه با برشمردن یک سری مزایای ذاتی شبکه های عصبی مبتنی بر الگوریتم رزونانس تطبیقی، ایده کاربرد آنها در بازشناسی چهره، جهت رفع نقایص موجود مطرح و در انتها جمع بندی مطالب فصل ارائه شده است.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 940
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

دانشکده مهندسـی برق و کامپیوتر

پایان‌نامه‌ی کارشناسی ارشد در رشته‌ی مهندسی کامپیوتر- نرم‌افزار

 شناسایی مشخصه ­های مناسب موجود در متن جهت رفع ابهام معنایی

 اساتید راهنما

دکتر محمد هادی صدرالدینی

دکتر مصطفی فخراحمد

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

 چکیده

به جرأت می­توان ادعا کرد که عصر حاضر، عصر انفجار اطلاعات است و شاید بتوان زبان را بعنوان مهمترین سد و مانع در انتقال اطلاعات دانست. بنابراین ضرورت بکارگیری ماشین در پردازش و ترجمه­ی متون تبدیل به نیازی غیر قابل انکار شده است. اما مشکلاتی که بر سر راه مترجم­های ماشینی وجود دارد مانع شده تا این مهم از کیفیت و دقت کافی برخوردار باشد.

یکی از تأثیرگذارترین مسائل در دقت و کیفیت ترجمه­ی ماشینی، رفع ابهام معنایی است که دقت در آن باعث بالا رفتن دقت کل عمل ترجمه می­گردد. منظور از رفع ابهام معنایی انتخاب معنای مناسب کلمه با توجه به متن، برای کلماتی است که دارای چندین معنای متفاوت هستند. لذا در این پژوهش سعی شده است تا به بررسی روش­های مختلف و ایده­های متفاوت پرداخته و با ارائه­ی شیوه­ای متفاوت در این راستا قدمی برداریم.

روش ارائه شده در این پایان نامه، روشی مبتنی بر دانش است که با بهره­گیری از اطلاعات تکمیلی پیرامون کلمه­ی مبهم در متن و ارائه­ی یک روش امتیازدهی، به رفع ابهام می­پردازد. به این منظور از یک طرف با بکارگیری وردنت و منابع دیگری که به نوعی مکمل وردنت هستند، فهرستی از کلمات مرتبط با کلمه­ی مبهم تهیه کرده و از طرف دیگر کلمات همراه با کلمه­ی مبهم در متن را از پیکره­ی مورد نظر استخراج می­کنیم. سپس با استفاده از یک رابطه­ی امتیازدهی، معنایی که دارای بیشترین امتیاز است و مرتبط­تر به نظر می­رسد را انتخاب می­کنیم. در نهایت، دقت روش ارائه شده را بررسی کرده و نتایج را با دقت سایر روش­ها مقایسه می­کنیم.

کلمات کلیدی: رفع ابهام معنایی، دیدگاه مبتنی بر دانش، وردنت، وردنت توسعه یافته، ترجمه­ی ماشینی

فهرست مطالب

 عنوان                         صفحه

فصل اول: مقدمه

1-1- مقدمه. 2

1-2- پردازش زبان­های طبیعی.. 3

1-3- ترجمه­ی ماشینی.. 8

1-3-1- روش­های ترجمه­ی ماشینی  10

1-3-1-1- روش­های مبتنی بر قانون.. 11

1-3-1-2- روش­های مبتنی بر پیکره 13

1-3-2- عوامل موثر بر کیفیت ترجمه  15

1-4- ساختار رساله. 17

فصل دوم: رفع ابهام معنایی

2-1- مقدمه. 20

2-2- انواع منابع دانش…. 22

2-2-1- منابع دانش ساختیافته  23

2-2-2- منابع دانش بدون ساختار 24

2-2-2-1 تقسیم­بندی دیگری از پیکره­ها 25

2-3- رویکردهای مختلف در رفع ابهام معنایی.. 26

2-3-1- دیدگاه مبتنی بر پیکره 26

2-3-1-1- سیستم­های نظارتی.. 26

2-3-1-2- سیستم­های غیرنظارتی.. 27

2-3-2- دیدگاه مبتنی بر دانش    28

2-3-3- دیدگاه ترکیبی و خلاقانه  30

2-4- فاکتورهای ارزیابی.. 30

2-4-1- پوشش    31

2-4-2- دقت   31

2-4-3- درستی و یادآوری  31

2-4-4- F-SCORE  32

فصل سوم: مروری بر کارهای مرتبط پیشین

3-1-  مقدمه. 34

3-2- روش­های نظارتی.. 35

3-3- روش­های غیرنظارتی.. 39

3-4- روش­های مبتنی بر دانش…. 41

3-5- روش­های ترکیبی و خلاقانه. 44

فصل چهارم: روش پیشنهادی

4-1- مقدمه. 51

4-2- معرفی ابزارها و منابع مورد استفاده 52

4-2-1- ریشه­یاب   52

4-2-2- برچسب گذار بخشی از گفتار 53

4-2-3- وردنت   54

4-2-4- وردنت توسعه یافته  57

4-2-5- دامنه­ی وردنت   59

4-3- مراحل روش پیشنهادی.. 59

4-3-1- استخراج کلمات همراه 60

4-3-1-1- پیش پردازش…. 61

4-3-2- استخراج فهرست لغات   61

4-3-2-1- کلمات مترادف و تعاریف… 62

4-3-2-2- کلیه­ی روابط معنایی.. 62

4-3-2-3- هایپرنیم در چند سطح.. 63

4-3-2-4- دامنه­ی کلمات… 64

4-3-2-5- امتیازدهی.. 64

فصل پنجم: پیاده­سازی و ارزیابی

5-1-  مقدمه. 67

5-2- نتایج.. 68

فصل ششم: جمع­بندی و نتیجه­گیری

6-1- جمع­بندی.. 71

6-2- کارهای آتی.. 72

فهرست منابع.. 74

1-1- مقدمه

تولید حجم عظیمی از مقالات و مستندات، جامعه­ی علمی را بر آن داشت تا با بهره­گیری از مزایا و توانایی­های روش­های خودکار جهت پردازش این متون، به حوزه­ای تحت عنوان پردازش زبان­های طبیعی[1] روی آورد. همچنین با توجه به وجود لیستی از معانی کلمات و عبارات یا همان دیکشنری و حتی اختصاص موسساتی جهت تعیین نحوه­ی استفاده از یک زبان در برخی از کشورها، اینطور به نظر می­رسد که امکان مکانیزه کردن فهم یک زبان توسط کامپیوتر وجود دارد [1].

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 642
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

دانشـکده مهندسـی

پایان‌نامه کارشناسی ارشد در رشته مهندسی کامپیوتر

گرایش هوش مصنوعی

عنوان:

ارائه یک مدل جدید یادگیری به منظور آموزش طبقه‌بندی‌کننده‌های سریال

استاد راهنما:

دکتر رضا بوستانی

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول
مقدمه
1. مقدمه…………………………………………………………………………………………………………………………………1
1-1. مقدمه 1
1-2. یادگیری ماشین 1
1-3. الگوریتمهای یادگیری جمعی 3
1-4. دسته بندی کننده های سریال 4
1-5. ایده اصلی تحقیق 5
1-6. نگاهی کلی به فصول رساله 6
فصل دوم
پیشینه تحقیق
2. پیشینه تحقیق …………………………………………………………………………………………………………………..8
2-1. مقدمه 8
2-2. اهمیت مسائل چندکلاسه 8
2-3. روشهای BOOSTING 11
2-3-1. مسائل دوکلاسه 13
2-3-2. مسائل چندکلاسه 14
تکنیک های تجزیه کلاسی 15
یکی-در مقابل-همه(OAA) 15
یکی-در مقابل-یکی(OAO) 16
روش P در مقابل Q 17
روشهای Boosting چندکلاسه 18
روش AdaBoost.M2 18
روش AdaBoost.OC 21
روش AdaBoost.ECC 22
2-4. روشهای جمعی سریال 23
2-4-1. دسته‌بندی‌‌کننده‌ی سریال 24
دسته‌بندی‌کننده‌های سریال همزمان 28
ساختار‌های سریال درختی 30
2-5. خلاصه 31
فصل سوم
راهکارهای پیشنهادی
3. راهکارهای پیشنهادی 33
3-1. مقدمه 33
3-2. روش LogitBoost سریال تودرتو 34
کلیات روش 34
جزییات روش 34
3-3. ساختار سریال پایش داد‌ه‌ها به کمک الگوریتم -kنزدیک‌ترینهمسایه 39
3-4. خلاصه 41
فصل چهارم
روال آزمایش‌ها
4. روال آزمایش‌‌ها ………………………………………………………………………………………………………………..43
4-1. مقدمه 43
4-2. دسته‌بندی‌کننده‌های مورد استفاده برای مقایسه 43
4-2-1. دلایل انتخاب روش‌های رقیب 43
4-2-2. جزییات پیاده‌سازی روش‌های رقیب 44
4-3. معیار‌های ارزیابی 46
4-4. مجموعه داده‌های به‌کار رفته در آزمایش‌ها 48
مجموعه داده‌های مربوط به مسائل چندکلاسه 48
مجموعه داد‌ه‌های مربوط به مسائل دوکلاسه 49
4-5. تست آماری فریدمن 50
4-6. خلاصه 52
فصل پنجم
نتایج
5. نتایج……………………………………………………………………………………………………………………………….54
5-1. مقدمه 54
5-2. نتایج حاصل از آزمایش هفت ترکیب مختلف از پارامترها برای روش پیشنهادی اول 54
5-2-1. تحلیل نتایج حاصل از آزمایش هفت ترکیب مختلف از پارامترها برای روش پیشنهادی اول 56
5-3. نتایج حاصل از آزمایش روش پیشنهادی اول و روش‌های رقیب 58
5-4. نتایج حاصل از آزمایش روش پیشنهادی دوم 61
5-5. خلاصه 63
فصل ششم
نتیجه‌گیری و کارهای آینده
6. نتیجه‌گیری و کارهای آینده 65
6-1. نتیجه‌گیری 65
6-2. کارهای آینده 66
اختصارات………….. 67
واژه نامه فارسی به انگلیسی 68
واژه نامه انگلیسی به فارسی 72
فهرست منابع……. 76
فهرست جداول

جدول 2-1.مثال از یک ماتریس کد گذاری به روش ECOC برای یک مساله چهار کلاسه 17
جدول 3-1.ترکیب پارامتری استفاده شده در راستای تحلیل تاثیر پارامترهای موجود در الگوریتم پیشنهادی اول…….. 39
جدول 4-1. جزییات مجموعه داده‌‌های چندکلاسه 49
جدول 4-2. جزییات مجموعه داده‌های دوکلاسه 50
جدول 5-1. مشخصات مجموعه داده‌های استفاده شده برای بررسی تاثیر پارامترها در روش پیشنهادی اول……. 55
جدول 5-2.مقادیر آزمایشی ترکیبات مختلف پارامترها برای روش پیشنهادی اول 55
جدول 5-3.نرخ خطا و انحراف معیار به‌دست آمده از ترکیبات مختلف پارامترها برای روش پیشنهادی اول ………………………………………………………………………………………….55
جدول 5-4.میانگین رتبه بندی برای 7 ترکیب پارامتری مقایسه شده بر 11 مجموعه داده چندکلاسه………. 58
جدول 5-5.تست فریدمن و تست تعقیبی Bonferroni-Dunn. برای 7 ترکیب پارامتری ، اختلافات معنادار با فونت توپر نمایش داده شده است. 58
جدول 5-6.نتایج حاصل از اعمال روش‌‌ پیشنهادی اول و روش‌های رقیب، در قالب نرخ خطای آزمایش و انحراف معیار 59
جدول 5-7.میانگین رتبه بندی برای 5 روش مقایسه شده بر 11 مجموعه داده چندکلاسه 60
جدول 5-8.نتایج تست فریدمن و تست تعقیبی Bonferroni-Dunn. برای روش پیشنهادی اول، اختلافات معنادار با فونت توپر نمایش داده شده است. 60
جدول 5-9. نتایج اعمال روش پیشنهادی دوم و روشKNN به ازای مقادیر مختلف k، در قالب نرخ خطای آزمایش و انحراف معیار 61
جدول 5-10.میانگین رتبه بندی برای 4 روش بر روی 12 مجموعه داده دوکلاسه 62
جدول 5-11.نتایج تست فریدمن و تست تعقیبی Bonferroni-Dunn. برای روش پیشنهادی دوم، اختلافات معنادار با فونت توپر نمایش داده شده است. 62
فهرست الگوریتم‌ها
عنوان صفحه
الگوریتم 1. شبه کد مربوط به روش AdaBoost 14
الگوریتم 2. شبه کد مربوط به روش AdaBoost.M2 19
الگوریتم 3. شبه کد مربوط به روش AdaBoost.OC 21
الگوریتم 4. شبه کد مربوط به روش AdaBoost.ECC 23
الگوریتم 5. ساختار سریال Viola-Jones 25
الگوریتم 6. شبه کد مربوط به فاز آموزش ساختار سریال پیشنهادی اول 38
الگوریتم 7. شبهکد مربوط به الگوریتم LogitBoost برای مسائل چندکلاسه 46

 

فهرست شکل ها
شکل 2-1. ساختار سریال Viola-Jones [42] 26
شکل 2-2. ساختار دسته‌بندی‌کننده‌ سریال همزمان 29
شکل 2-3. ساختار درختی ارائه شده توسط لینهارت 31
شکل 3-1. ساختار کلی روش دسته‌بندی‌ سریال پیشنهادی اول 35
شکل 3-2. مکانیزم انتقال داده از یک لایه به لایه بعدی در روش پیشنهادی اول 37
شکل 3-3. ساختار سریال پیشنهادی دوم 40

چکیده 

امروزه ایجاد و آموزش بهینه دسته‌بندی‌کننده های مستحکم و سریع به یکی از مهمترین دغدغه‌های علم هوش مصنوعی و به ویژه حوزه یادگیری ماشین بدل شده است. با رشد روز افزون در حجم و سرعت تولید داده، نیاز به تولید دسته‌بندی‌کننده‌های دقیق و سریع بیش از پیش حس می شود و در واقع یک چالش محسوب می شود. روش‌های یادگیری جمعی طی سالیان اخیر اثبات کرده‌اند که برای رفع مشکلات یاد شده گزینه‌های مناسبی هستند.

روش‌های یادگیری جمعی، گروهی از مدل های ضعیف را تولید می‌کنند که با تلفیق مناسب و هوشمندانه خروجی آنها می توان به یک دسته‌بندی‌کننده قوی دست یافت. این روش‌ها زمانی که از الگوریتم‌های تقویتی در ساختار سریال بهره می‌برند، کارایی به مراتب بالاتری از خود نشان می‌دهند.

استفاده از شیوه تقسیم-و-تسخیر یا همان separate-and-conquer در زمان آموزش هر لایه از ساختار سریال، دلیل قدرت یادگیر‌های جمعی سریال می‌باشد؛ علاوه بر آن، تعیین مرزهای تصمیم موارد جزیی در دور‌های نخست ساختار سریال انجام می‌شود و در دور‌های آتی این مرز پالایش شده و موارد سخت‌تر را در بر خواهد گرفت. عملکرد مدل کلاسیک ساختار سریال، در مواجهه با مسائل دوکلاسه، به این صورت است که نمونه‌های غیر هدف که در لایه‌های اولیه یاد گرفته می‌شوند از سیستم حذف شده و با نمونه‌های سخت‌تر جایگزین می‌شوند؛ که می‌توان از این استراتژی با نام bootstrapping یاد کرد. با این روند، یادگیری بهینه کلان-به-جزیی یا همان learning coarse-to-fine حاصل می‌شود.

در این مطالعه، یک مدل نوین برای آموزش طبقه‌بندی‌کننده‌های سریال ارایه شده است که از روش وارسی اعتبار در ساختار آن استفاده شده است. در روش پیشنهادی، درصدی از داده‌های درست دسته‌بندی‌شده در لایه‌ نخست ساختار به منظور حفظ عمومیت سیستم، برای آموزش به لایه بعدی فرستاده می‌شود و این روند برای لایه‌های بعدی ادامه خواهد یافت. بدین ترتیب، مدل ارائه شده در مقابل داده‌های نویزی بسیار مقاوم بوده و انحراف معیار نرخ خطای آزمایش آن، از روش‌های رقیب کمتر می‌شود.
مقدمه
امروزه شاهد رشد عظیمی در تولید داده هستیم. فعالیت‌ها و تعامل‌های روزانه انسان‌ها، حجم چشمگیری از داده‌ها و اطلاعات را به وجود می‌آورد؛ به عنوان مثال در ارتباطات از راه دور، تراکنش های‌مالی و بانکی، شبکه‌های اجتماعی، فعالیت‌های اینترنتی عام، امور مربوط به بهداشت و درمان، پایش اطلاعات امنیتی، اطلاعات و داده‌های آماری مانند سرشماری نفوس و بسیاری موارد دیگر [1,2]. با پیشرفت چشمگیر تجهیزات سخت افزاری، هزینه ذخیره داده کم شده است؛ این در حالی است که آنالیز صحیح و استخراج اطلاعات مفید از این حجم از داده به یک دغدغه تبدیل شده است. هوش مصنوعی و به ویژه حوزه یادگیری ماشین ، به دنبال یافتن روش‌ها و ابزار‌های موثر جهت رفع این مشکل می باشد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 627
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شاهرود

پایان نامه کارشناسی ارشد رشته مهندسی کامپیوتر

گرایش هوش مصنوعی

عنوان:

ارتباط بین ربات های شبکه ای در موقعیت های جستجوی زیر آب

استاد راهنما:

دکتر علی اکبر پویان

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول: مقدمه و کلیات.. 1

1-1- مقدمه ای بر شبکه های حسگر بیسیم زیرآب.. 2

1-1-1- چالش های طراحی شبکه های حسگر بیسیم زیر آب.. 3

1-2- تعاریف ، فرضیات و ضرورت مسئله. 3

1-2-1- تعاریف… 4

1-2-2- فرضیات تحقیق.. 4

1-2-3- ضرورت تحقیق.. 5

1-3- هدف و نحوه رویکرد پژوهش…. 7

1-4- ساختار پایان نامه. 8

فصل دوم: ادبیات موضوع و بررسی پژوهش های مرتبط.. 11

2-1- مقدمه. 12

2-2- امواج صوتی و محدویت های آن.. 12

2-3- اجزاء شبکه حسگر بیسیم زیرآب.. 16

2-4- معماری های ارتباطی شبکه های حسگر بیسیم زیرآب.. 18

2-4-1- شبکه های حسگر زیرآبی دوبعدی ایستا برای نظارت کف اقیانوس… 18

2-4-2- شبکه های حسگر زیرآب سه بعدی ایستا برای نظارت ستونی اقیانوس… 19

2-4-3- شبکه سه بعدی با استفاده از زیرآبی های خود مختار. 20

2-5- کنترل توپولوژی.. 21

2-6- پوشش شبکه. 22

2-6-1- پوشش سراسری.. 22

2-6-2- پوشش مانعی.. 23

2-6-3- پوشش جاروبی.. 24

2-7- اتصال شبکه. 25

2-8- دستیابی همزمان به پوشش و اتصال شبکه. 26

2-9- الگوریتم ژنتیک و کاربرد آن در کنترل توپولوژی.. 28

2-9-1- مفاهیم اولیه در الگوریتم ژنتیک… 28

2-9-2- کاربرد الگوریتم ژنتیک در شبکه حسگر و کنترل توپولوژی.. 30

فصل سوم: روش پیشنهادی.. 33

3-1- مقدمه. 34

3-2- کنترل توپولوژی با هدف پوشش سراسری.. 34

3-2-1- ساختار کروموزوم ها 35

3-2-2- تابع برازندگی.. 37

3-2-3- عملگر انتخاب.. 39

3-2-4- عملگر تلفیق.. 41

3-2-5- عملگر جهش…. 42

3-2-6- تحلیلی آماری برای محاسبه میانگین درجه ی همسایگی.. 42

3-2-7- روند کلی.. 44

3-3- کنترل توپولوژی با هدف پوشش حفاظتی از یک شئ.. 45

3-3-1- تابع برازندگی.. 45

3-3-2- تحلیل آماری برای محاسبه میانگین درجه ی همسایگی.. 46

3-4- کنترل توپولوژی با هدف حفاظت از یک ورودی.. 46

3-4-1- تابع برازندگی.. 47

3-4-2- تحلیل آماری برای محاسبه میانگین درجه ی همسایگی.. 47

فصل چهارم: پیاده سازی و ارزیابی نتایج.. 49

4-1- مقدمه. 50

4-2- معرفی شبیه ساز Aqua-Sim.. 50

4-3- معرفی معیارهای بررسی کارایی سیستم.. 51

4-3-1- پوشش حجمی نرمال شده. 52

4-3-2- میانگین مسافت طی شده (ADT) 52

4-3-3- میانگین درجه ی همسایگی  (AND) 53

4-3-4- زمان استقرار (DT) 53

4-4- نتایج کنترل توپولوژی با هدف پوشش سراسری.. 54

4-4-1- آزمایش اول (به دست آوردن تعداد مناسب AUVها برای حداکثرسازی پوشش سراسری) 54

4-4-2- آزمایش دوم (مقایسه ی استفاده و عدم استفاده از میانگین درجه همسایگی) 56

4-4-3- آزمایش سوم (تاثیر از کار افتادن چند AUV) 61

4-4-4- آزمایش چهارم (تاثیر خطای مکان یابی گرهها) 66

4-4-5- آزمایش پنجم (تاثیر کاهش حرکت AUVها در هر گام) 69

4-4-5- آزمایش ششم (مقایسه روشهای پیشنهادی با روش قبلی) 71

4-5- نتایج کنترل توپولوژی با هدف پوشش حفاظتی از یک شئ.. 73

4-5-1- آزمایش اول (به دست آوردن تعداد مناسب AUVها برای محافظت شئ) 73

4-5-2- آزمایش دوم (محافظت از یک شئ) 75

4-6- نتایج کنترل توپولوژی با هدف پوشش حفاظتی از یک درگاه. 79

4-6-1- آزمایش اول (محافظت از یک درگاه) 79

فصل پنجم: نتیجه گیری و پیشنهادات.. 83

5-1- نتیجه گیری.. 84

5-2- پیشنهادات.. 85

فهرست منابع. 86

 

فهرست شکل ها

شکل 2-1- شبکه حسگر بیسیم زیر آب دوبعدی.. 19

شکل 2-2- شبکه حسگر بیسیم زیر آب سه بعدی.. 20

شکل 2-3-  شبکه حسگر بیسیم زیر آب سه بعدی با استفاده از AUVها 21

شکل 2-4- نمونه ای از پوشش سراسری حسگرها 23

شکل 2-5- پوشش مانعی الف)پوشش مانعی ضعیف ب)پوشش مانعی قوی.. 24

شکل 2-6-  نمونه ای از پوشش مانعی در فضای 3 بعدی.. 24

شکل 2-7- نمونه ای از پوشش جاروبی.. 25

شکل 2-8- طبقه بندی مسائل کنترل توپولوژی.. 26

شکل 2-9-  الگوی استقرار مبنی بر نوار برای رسیدن به پوشش و اتصال 2 تایی. 27

شکل 2-10- چهار الگوی استقرار معروف حسگرها در محیط. (a) شش گوشه، (b) مربع، (c) متوازی الاضلاع و (d) شبکه مثلثی (با مثلث متساوی الاضلاع). 27

شکل 2-11- فلوچارت الگوریتم ژنتیک… 30

شکل 3-1- محافظت چند AUV از یک ناحیه. 35

شکل 3-2- مدل حرکتی AUVها در فضای 3 بعدی.. 35

شکل 3-3- ساختار کروموزوم. 36

شکل 3-4- فاصله ی مطلوب یک گره از همسایگانش… 37

شکل 3-5- انتخاب به روش چرخ رولت.. 39

شکل 3-6- انتخاب به روش تورنتمنت.. 40

شکل 3-7- عملگر ترکیب دو نقطه ای.. 41

شکل 3-8- نمودار درجه میانگین همسایگی نسبت به محدوده ارتباطی  و تعداد گره ها 43

شکل 3-9- محافظت از یک شی توسط چند AUV.. 45

شکل 4-1- ارتباط Aqua-sim با سایر بسته ها در NS2. 51

شکل 4-2-  میانگین درصد حجمی به دست آمده نسبت به تعداد AUV ها در محیط.. 56

شکل 4-3- موضع گیری اولیه AUVها در محیط (آزمایش 1) 57

شکل 4-4- موضع گیری AUVها در محیط پس از اجرای شبیه سازی (الف) بدون کنترل درجه (ب) با کنترل درجه  58

شکل 4-5- نمودار پوشش حجمی نرمال شده (الف) بدون کنترل درجه (ب) با کنترل درجه. 58

شکل 4-6- میانگین درجه همسایگی نسبت به گام زمانی (الف) بدون کنترل درجه (ب) با کنترل درجه. 59

شکل 4-7- میانگین مسافت طی شده نسبت به گام زمانی (الف) بدون کنترل درجه (ب) با کنترل درجه. 60

شکل 4-8- میانگین بهترین برازندگی گره ها نسبت به گام زمانی (الف) بدون کنترل درجه (ب) با کنترل درجه  61

شکل 4-9- قرارگیری AUVها در محیط پس از شبیه سازی  (از کار افتادن چند AUV) 63

شکل 4-10-  نمودار پوشش حجمی نرمال شده نسبت به گام زمانی ( از کار افتادن چند AUV) 64

شکل 4-11- میانگین مسافت طی شده گره ها نسبت به گام زمانی ( از کار افتادن چند AUV) 64

شکل 4-12- میانگین درجه همسایگی گره ها نسبت به گام های زمانی ( از کار افتادن چند AUV) 65

شکل 4-13-  قرارگیری AUVها در محیط پس از شبیه سازی )خطای مکان یابی( 66

شکل 4-14- نمودار پوشش حجمی نرمال شده نسبت به گام زمانی  (خطای مکان یابی) 67

شکل 4-15- میانگین مسافت طی شده گره ها نسبت به گام زمانی (خطای مکان یابی) 68

شکل 4-16- میانگین درجه همسایگی گره ها نسبت به گام های زمانی (خطای مکان یابی) 68

شکل 4-17-  میانگین مسافت طی شده نسبت به گام زمانی در دو حالت ، 1=Pm و 0.7=Pm.. 71

شکل 4-18-  پوشش حجمی نرمال شده نسبت به گام زمانی زمانی در دو حالت ، 1=Pm و 0.7=Pm.. 71

شکل 4-19-  میانگین مسافت طی شده نسبت به گام زمانی (مقایسه ی روش ها) 72

شکل 4-20-  پوشش حجمی نرمال شده نسبت به گام زمانی زمانی  (مقایسه ی روش ها) 72

شکل 4-21- میانگین درصد حجمی به دست آمده نسبت به تعداد AUV ها در محیط  (محافظت از یک شئ) 75

شکل 4-22- موضع گیری AUVها در محیط پس از اجزای شبیه سازی (محافظت از یک شئ) 76

شکل 4-23- پوشش حجمی نرمال شده نسبت به گام زمانی (محافظت از یک شئ) 77

شکل 4-24-  میانگین مسافت طی شده گره ها نسبت به گام زمانی (محافظت از یک شئ) 77

شکل 4-25-  میانگین درجه همسایگی گره ها نسبت به گام های زمانی (محافظت از یک شئ) 78

شکل 4-26- بهترین برازندگی گره ها نسبت به گام زمانی (محافظت از یک شئ) 79

شکل 4-27- موضع گیری AUVها در محیط پس از اجزای شبیه سازی (محافظت از یک درگاه). الف- نمای سه بعدی ب- نمای دو بعدی   80

شکل 4-28- پوشش حجمی نرمال شده نسبت به گام زمانی (محافظت از یک درگاه) 81

شکل 4-29- میانگین مسافت طی شده گره ها نسبت به گام زمانی (محافظت از یک درگاه) 81

شکل 4-30- میانگین درجه همسایگی گره ها نسبت به گام های زمانی (محافظت از یک درگاه) 82

 

فهرست جداول

جدول 2-1- مقایسه ی سه تکنولوژی برای ارتباطات زیر آب.. 13

جدول 2-2- تاثیر فاصله پهنای باند در امواج صوتی.. 16

جدول 4-1- پارامترهای مورد نیاز در الگوریتم ژنتیک… 54

جدول 4-2- پارامترها  (به دست آوردن تعداد مناسب AUVها برای حداکثرسازی پوشش سراسری) 55

جدول 4-3- میانگین درصد پوشش حجمی نرمال شده نسبت به تعداد AUV ها در محیط.. 55

جدول 4-4- پارامترهای مورد استفاده (مقایسه ی استفاده و عدم استفاده از میانگین درجه همسایگی) 56

جدول 4-5- مقادیر حاصل از ارزیابی آزمایش مقایسه کنترل و عدم کنترل درجه همسایگی.. 60

جدول 4-6- پارامترها (تاثیر از کار افتادن چند AUV ) 62

جدول 4-7- مقادیر حاصل از ارزیابی آزمایش سوم  (از کار افتادن 4 AUV) 65

جدول 4-8- مقادیر حاصل از ارزیابی آزمایش چهارم (خطای مکان یابی) 69

جدول 4-9- پارامترها (به دست آوردن تعداد مناسب AUVها برای محافظت شئ ) 73

جدول 4-10-  میانگین درصد پوشش حجمی نرمال شده نسبت به تعداد AUV ها در محیط.. 74

جدول 4-11- پارامترها (محافظت از یک شئ) 75

جدول 4-12- مقادیر حاصل از ارزیابی آزمایش پوشش حفاظتی.. 78

جدول 4-13- پارامترها (محافظت از یک درگاه) 79

جدول 4-14-  مقادیر حاصل از ارزیابی آزمایش پوشش حفاظتی.. 82

چکیده

در سال­های اخیر استفاده از شبکه­ ­های حسگر بی­سیم زیر آب (UWSN)[1] برای بدست آوردن اطلاعات دقیق از دریاها و اقیانوس­ها توجه بسیاری از محققان را به خود جلب نموده است. در انجام ماموریت­های زیرآبی می­توان از تیمی از زیرآبی­های خودمختار[2](AUVs) استفاده نمود. این تجهیزات مجهز به انواع حسگرها جهت جمع­آوری داده در محیط زیر آب می­باشند. با استفاده از تکنیک­های هوش مصنوعی می­توان آن­ها را هوشمند نمود تا بدون نیاز به دخالت و کنترل انسانی عملیات مورد نظر خود را انجام دهند. ماموریت اصلی شبکه­های حسگر بی­سیم نظارت اهداف و کشف وقوع رویداد است. به واسطه­ی خاصیت تصادفی رویدادها و پارامترهای محیط، نقاط مورد توجه[3] در محیط، باید توسط حسگرها پوشش داده شود تا رویدادها مشاهده و گزارش داده شوند. کنترل توپولوژی مشخص­کننده­ی نحوه­ی ارتباطات حسگرها در شبکه و میزان پوشش ناحیه­ی مورد سنجش توسط حسگرها است. محیط زیر آب به صورت پویا تغییر می­کند. بنابراین در محیط­ زیرآب استفاده از رویکرد متمرکز برای کنترل توپولوژی مناسب نیست. پهنای باند ارتباطی محدود و نرخ خطای بیتی بالا در ارتباطات زیر آب می­تواند منجر به محدودیت اطلاعات کسب شده توسط آن­ها از محیط اطرافشان گردد.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 888
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

واحد بین الملل

 

پایان‌نامه کارشناسی ارشد

در رشته‌ی کامپیوتر –  مهندسی نرم افزار

 

 

 

ارائه مدلی برای شناسایی عوامل اثرگذار و ضریب تاثیر آنها در سود و زیان بیمه شخص ثالث خودرو شرکتهای بیمه بوسیله روشهای داده کاوی مطالعه موردی شرکت سهامی بیمه ایران

 

 

استاد راهنما:

دکترغلامحسین دستغیبی فرد

 

 

بهمن ماه 1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

بررسی اطلاعات بیمه های اتومبیل نشان داده عواملی چون نوع استفاده خودرو، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، مبلغ حق بیمه، میزان تعهدات بیمه نامه، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه، تاخیردرتمدید بیمه نامه، در سود و زیان شرکت های بیمه تاثیر داشته اند.

هدف این پایان نامه شناخت عوامل اثرگذار و ضریب تاثیر آنها در سود و زیان بیمه شخص ثالث خودرو شرکت های بیمه با استفاده از روش داده کاوی و  سپس انتخاب الگوریتمی که بهترین میزان دقت پیش بینی برای تشخیص این عوامل را داشته اند می باشد.

نتیجه حاصل از این پژوهش نشان می دهد که روشهای داده کاوی با استفاده از الگوریتم های دسته بندی با دقت بالای 91% و الگوریتم های درخت تصمیم با دقت بالای 96% و الگوریتم های خوشه بندی با ایجاد خوشه های قابل قبول  قادر به ارائه مدلی برای تشخیص عوامل اثرگذار و تعیین میزان اثر آنها در سود و زیان بیمه نامه شخص ثالث خودرو خواهند بود.

 

کلیدواژگان: داده کاوی ـ بیمه شخص ثالث خودرو ـ سود و زیان

فهرست مطالب

عنوان                                                                                        صفحه

 

فصل اول مقدمه

1-1 تعریف داده کاوی.. 3

1-2 تعریف بیمه. 4

1-3 هدف پایان نامه. 4

1-4 مراحل انجام تحقیق.. 4

1-5 ساختار پایان نامه. 5

 

فصل دوم: ادبیات موضوع و تحقیقات پیشین

2-1 داده کاوی و یادگیری ماشین.. 7

2-2 ابزارها و تکنیک های داده کاوی.. 8

2-3 روشهای داده کاوی.. 9

2-3-1 روشهای توصیف داده ها 10

2-3-2 روشهای تجزیه و تحلیل وابستگی 10

2-3-3 روشهای دسته بندی و پیشگویی.. 10

2-3-4 درخت تصمیم. 11

2-3-5 شبکه عصبی.. 12

2-3-6 استدلال مبتنی بر حافظه. 12

2-3-7 ماشین های بردار پشتیبانی.. 13

2-3-8 روشهای خوشه بندی 13

2-3-9 روش K-Means 13

2-3-10 شبکه کوهنن.. 14

2-3-11 روش  دو گام. 14

2-3-12 روشهای تجزیه و تحلیل نویز. 14

2-4 دسته های نامتعادل]صنیعی آباده 1391[. 15

2-4-1 راهکار مبتنی بر معیار 15

2-4-2 راهکار مبتنی بر نمونه برداری.. 15

2-5 پیشینه تحقیق.. 16

2-6 خلاصه فصل. 19

 

فصل سوم: شرح پژوهش

3-1 انتخاب نرم افزار 21

3-1-1 Rapidminer 21

3-1-2 مقایسه RapidMiner   با سایر نرم افزار های مشابه. 21

3-2 داده ها 25

3-2-1 انتخاب داده 25

3-2-2 فیلدهای مجموعه داده صدور 25

3-2-3 کاهش ابعاد. 25

3-2-4 فیلدهای مجموعه داده خسارت.. 29

3-2-5 پاکسازی داده ها 29

3-2-6 رسیدگی به داده های از دست رفته. 29

3-2-7 کشف داده دور افتاده 30

3-2-8 انبوهش داده 32

3-2-9 ایجاد ویژگی دسته. 32

3-2-10 تبدیل داده 32

3-2-11 انتقال داده به محیط داده کاوی.. 32

3-2-12 انواع داده تعیین شده 33

3-2-13 عملیات انتخاب ویژگیهای موثرتر. 34

3-3 نتایج اعمال الگوریتم PCA و الگوریتم های وزن دهی.. 34

3-4 ویژگی های منتخب جهت استفاده در الگوریتمهای حساس به تعداد ویژگی.. 36

3-5 معیارهای ارزیابی الگوریتمهای دسته بندی.. 37

3-6 ماتریس درهم ریختگی.. 37

3-7 معیار AUC. 38

3-8 روشهای ارزیابی الگوریتم های دسته بندی.. 39

3-8-1 روش Holdout 39

3-8-2 روش Random Subsampling. 39

3-8-3 روش Cross-Validation. 40

3-8-4 روش Bootstrap. 40

3-9 الگوریتمهای دسته بندی.. 41

3-9-1 الگوریتم KNN.. 42

3-9-2 الگوریتم Naïve Bayes 42

3-9-3 الگوریتم Neural Network. 43

3-9-4 الگوریتم   SVM   خطی.. 45

3-9-5 الگوریتم   رگرسیون لجستیک.. 46

3-9-6 الگوریتم  Meta Decision Tree. 47

3-9-7 الگوریتم درخت Wj48. 49

3-9-8 الگوریتم درخت Random forest 51

3-10 معیارهای ارزیابی الگوریتم های مبتنی بر قانون(کشف قوانین انجمنی) 54

3-10-1 الگوریتم FPgrowth. 55

3-10-2 الگوریتم Weka Apriori 55

3-11 معیارهای ارزیابی الگوریتمهای خوشه بندی.. 55

3-12 الگوریتم های خوشه بندی.. 57

3-12-1 الگوریتم K-Means 57

3-12-2 الگوریتم Kohonen. 60

3-12-3 الگوریتم دوگامی.. 64

 

فصل چهارم: ارزیابی و نتیجه گیری

4-1 مقایسه نتایج. 69

4-2 الگوریتمهای دسته بندی.. 69

4-3 الگوریتم های دسته بندی درخت تصمیم. 70

4-4 الگوریتم های خوشه بندی.. 79

4-5 الگوریتم های قواعد تلازمی(مبتنی بر قانون) 81

4-6 پیشنهادات به شرکت های بیمه. 81

4-7 پیشنهادات جهت ادامه کار 83

 

منابع و مأخذ

فهرست منابع فارسی.. 84

فهرست منابع انگلیسی.. 85

 

 

 

 

فهرست جدول‌ها

 

عنوان                                                                                        صفحه

 

جدول شماره 3-1:  نتایج رای گیری استفاده از نرم افزارهای داده کاوی………………………………… 24

جدول شماره 3-2: فیلدهای اولیه داده های صدور…………………………………………………………………….. 26

جدول شماره 3-3: فیلدهای نهایی داده های صدور…………………………………………………………………… 27

جدول شماره 3-4: فیلدهای  حذف شده داده های صدور و علت حذف آنها………………………… 28

جدول 3-5:  فیلدهای استخراج شده از داده های خسارت……………………………………………………….. 28

جدول 3-6: نتایج  نمودار boxplot………………………………………………………………………………………………. 31

جدول 3-7: انواع داده استفاده شده…………………………………………………………………………………………….. 33

جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف…………… 37

جدول 3-9: ماتریس در هم ریختگی رکوردهای تخمینی(Predicted  Records)…………………… 38

جدول 3-10: قوانین استخراج شده توسط الگوریتم Fpgrowth……………………………………………… 55

جدول 3-11: قوانین استخراج شده توسط الگوریتم Weka Apriori……………………………………….. 55

جدول 3-12: تنظیمات پارامترهای الگوریتم K-Means……………………………………………………………. 57

اجرا برای 9 خوشه در الگوریتم K-Means………………………………………………………………………………….. 60

جدول 3-13: تنظیمات پارامترهای الگوریتم Kohonen……………………………………………………………. 64

جدول 3-14: تنظیمات پارامترهای الگوریتم دوگامی………………………………………………………………… 69

جدول 4-1: مقایسه الگوریتم های دسته بند………………………………………………………………………………. 70

جدول 4-2: مقایسه الگوریتم های دسته بند درخت تصمیم…………………………………………………….. 70

جدول 4-3: ماتریس آشفتگی قانون شماره 1…………………………………………………………………………….. 71

جدول 4-4: ماتریس آشفتگی قانون شماره 2…………………………………………………………………………….. 72

جدول 4-5: ماتریس آشفتگی قانون شماره 3 الف……………………………………………………………………… 72

جدول 4-6: ماتریس آشفتگی قانون شماره 3 ب……………………………………………………………………….. 72

جدول 4-7: ماتریس آشفتگی قانون شماره 3 ج………………………………………………………………………… 73

عنوان                                                                                        صفحه

 

جدول 4-8: ماتریس آشفتگی قانون شماره 3 د…………………………………………………………………………. 73

جدول 4-9: ماتریس آشفتگی قانون شماره 3 ه………………………………………………………………………….. 73

جدول 4-10: ماتریس آشفتگی قانون شماره 3 و………………………………………………………………………. 74

جدول 4-11: ماتریس آشفتگی قانون شماره 3 ز………………………………………………………………………. 76

جدول 4-12: ماتریس آشفتگی قانون شماره 4………………………………………………………………………….. 76

جدول 4-13: ماتریس آشفتگی قانون شماره 5………………………………………………………………………….. 77

جدول 4-14: ماتریس آشفتگی قانون شماره 6 الف…………………………………………………………………… 77

جدول 4-15: ماتریس آشفتگی قانون شماره 6 ب…………………………………………………………………….. 78

جدول 4-16: ماتریس آشفتگی قانون شماره7……………………………………………………………………………. 78

جدول 4-17: ماتریس آشفتگی قانون شماره8……………………………………………………………………………. 79

جدول 4-18: مقایسه الگوریتم های خوشه بندی………………………………………………………………………. 79

جدول 4-19: فیلدهای حاصل از الگوریتم های خوشه بندی……………………………………………………. 80

جدول 4-20: نتایج الگوریتم های FpGrowth, Weka Apriori……………………………………………….. 81

فهرست شکل‌ها

 

عنوان                                                                                        صفحه

 

شکل شماره3-1: داده از دست رفته فیلد” نوع بیمه ” پس از انتقال به محیط داده کاوی…… 33

شکل 3-2:  نتایج الگوریتمPCA …………………………………………………………………………………………………. 34

شکل 3-3:  نتایج الگوریتم SVM Weighting در ارزشدهی به ویژگی ها………………………………. 35

شکل 3-4: نتایج الگوریتم Weighting Deviation  در ارزشدهی به ویژگی ها………………………. 35

شکل 3-5: نتایج الگوریتم Weighting Correlation در ارزشدهی به ویژگی ها……………………… 36

شکل 3-6:  نمای کلی استفاده از روشهای ارزیابی……………………………………………………………………… 41

شکل 3-7:  نمای کلی استفاده از یک مدل درون یک روش ارزیابی………………………………………… 42

شکل 3-8:  نمودار AUC الگوریتم KNN………………………………………………………………………………….. 42

شکل 3-9:  نمودار AUC الگوریتم Naïve Bayes…………………………………………………………………….. 43

شکل 3-10:  تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی……………………… 44

شکل 3-11:  نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net……………………………………. 44

شکل 3-12:  تبدیل ویژگی های غیر عددی به عدد در الگوریتم  SVM  خطی……………………. 45

شکل 3-13 :  نمودار AUC الگوریتم  SVM Linear……………………………………………………………….. 46

شکل 3-14 :  نمودار AUC الگوریتم  رگرسیون لجستیک………………………………………………………. 47

شکل 3-15 : نمودار AUC الگوریتم  Meta Decision Tree……………………………………………………. 48

شکل 3-16 : قسمتی از نمودارtree الگوریتم  Meta Decision Tree……………………………………… 49

شکل 3-17 :  نمودار radial الگوریتم  Meta Decision Tree………………………………………………….. 49

شکل 318نمودار AUC الگوریتم  Wj48……………………………………………………………………………….. 50

شکل 3-19 :  نمودار tree الگوریتم  Wj48………………………………………………………………………………… 51

شکل 3-20 :  نمودار AUC الگوریتم  Random forest…………………………………………………………… 52

شکل 3-21 :  نمودار تولید 20 درخت در الگوریتم  Random Forest………………………………….. 53

شکل 3-22 :  یک نمونه درخت تولید شده توسط الگوریتم  Random Forest…………………….. 53

عنوان                                                                                        صفحه

 

شکل 3-23 : رسیدن درصد خطا به صفر پس از 8مرتبه………………………………………………………….. 57

شکل 3-24 : Predictor  Importance for K-Means……………………………………………………………… 58

شکل 3-25 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم

K-Means……………………………………………………………………………………………………………………………………….59

شکل 3-26 : کیفیت خوشه ها در الگوریتمMeans K-…………………………………………………………….. 60

شکل 3-27 : Predictor  Importance for Kohonen……………………………………………………………… 61

شکل 3-28 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم

Kohonen……………………………………………………………………………………………………………………………………….62

شکل 3-29 : کیفیت خوشه ها در الگوریتمMeans K-…………………………………………………………….. 63

شکل 3-30 : تعداد نرون های ورودی و خروجی در Kohonen……………………………………………….. 63

شکل 3-31 : Predictor  Importance for  دوگامی…………………………………………………………………. 64

شکل 3-32 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در

الگوریتم دوگامی…………………………………………………………………………………………………………………………….. 65

شکل 3-33 : کیفیت خوشه ها در الگوریتم دوگامی………………………………………………………………….. 66

شکل4-1: نمودارنسبت تخفیف عدم خسارت به خسارت…………………………………………………………… 75

مقدمه

 

 

شرکتهای تجاری و بازرگانی برای ادامه بقا و حفظ بازار همواره بر سود دهی و کاهش ضرر و زیان خود تاکید دارند از این رو  روشهای جذب مشتری و همچنین تکنیکهای جلوگیری یا کاهش زیان در سرلوحه کاری این شرکتها قرار می گیرد.

از جمله شرکتهایی که بدلایل مختلف در معرض کاهش سود و یا افزایش زیان قرار می گیرند شرکتهای بیمه ای می باشند. عواملی همچون بازاریابی، وفاداری مشتریان، نرخ حق بیمه، تبلیغات، تقلب، می تواند باعث جذب یا دفع مشتری گردد که در سود و زیان تاثیر مستقیم و غیر مستقیم دارد.

پرداخت خسارت نیز به عنوان تعهد شرکتهای بیمه  منجر به کاهش سود و در بعضی موارد موجب زیان یک شرکت بیمه می شود. خسارت می تواند بدلایل مختلف رخ دهد و یا عملی دیگر به گونه ای خسارت جلوه داده شود که در واقع اینچنین نیست[Derrig et. al 2006].

عواملی از قبیل فرهنگ رانندگی، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، جاده های بین شهری و خیابانهای داخل شهر که شهرداری ها و ادارات راه را به چالش می کشد، تقلب، وضعیت آب و هوا، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه [Wilson 2003]، روزهای تعطیل، مسافرتها و بسیاری موارد دیگر می توانند موجب خسارت و در نهایت افزایش زیان یک شرکت بیمه ای گردند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 704
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
نوشته شده توسط : admin

دانشگاه شیراز

دانشکده‌ مهندسی

پایان‌نامه‌ی کارشناسی ارشد در رشته‌ی مهندسی کامپیوتر

گرایش هوش مصنوعی

عنوان:

ارائه‌ چارچوبی در راستای بهبود پیش‌بینی وضعیت ترافیک

استاد راهنما:

دکتر ستار هاشمی

 

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل اول. مقدمه

1-1- تعریف مسئله………………………… 2

1-2- چالش‌های مسئله………………………. 4

1-3- نگاهی به فصول پایان­نامه……………… 7

فصل دوم. مبانی نظری تحقیق

2-1- مقدمه…………………………….. 10

2-2- متدهای یادگیری تجمعی……………….. 11

2-2-1- تعاریف مفاهیم اولیه……………. 11

2-2-2- درخت بوستینگ………………….. 13

2-2-3- درخت بگینگ……………………. 13

2-3- رندوم فارست……………………….. 15

2-3-1- مراحل توسعه‌ی رندوم فارست……….. 16

2-3-2- تئوری‌های مرتبط با رندوم فارست…… 19

2-3-3- رندوم فارست برای رگرسیون……….. 22

2-3-4- مزایا و کاربردهای رندوم فارست…… 23

2-4- نتیجه­گیری…………………………. 24

 

فصل سوم. پیشینه تحقیق

3-1- مقدمه…………………………….. 26

3-2- تعریف مسئله……………………….. 26

3-3- روش‌های مبتنی بر آنالیزهای سری زمانی….. 29

3-4- روش‌های مبتنی بر مدل‌های شبکه عصبی…….. 32

3-5- روش‌های مبتنی بر الگوریتم‌های داده­کاوی…. 34

فصل چهارم. معرفی تکنیک پیشنهادی

4-1- مقدمه…………………………….. 40

4-2- خصوصیات کلی پایگاه داده…………….. 41

4-3- پایگاه داده­ی مورد استفاده…………… 42

4-3-1- داده‌ی آموزشی………………….. 44

4-3-2- داده‌ی آزمایشی…………………. 44

4-4- تکنیک پیشنهادی…………………….. 45

4-4-1- بررسی توزیع جریان‌های ترافیکی……. 47

4-4-2- مرحله پیش پردازش و استخراج ویژگی… 50

4-4-3- مرحله شناسایی و تقسیم بندی به Context های مختلف  52

4-4-4- مرحله یادگیری با بکارگیری Context-Aware Random Forest   56

 

فصل پنجم. نتایج تجربی

5-1- مقدمه…………………………….. 59

5-2- پایگاه داده……………………….. 60

5-3- معیارهای ارزیابی…………………… 61

5-3-1- معیار ارزیابی خطای پیش­بینی……… 61

5-3-2- مقایسه کارآیی معیارهای سنجش فاصله بر روی مشاهدات ترافیکی                              62

5-4- بررسی تناسب الگوریتم رندوم فارست در مقایسه با دیگر متدها    64

5-5- تنظیمات اعمال شده در پیاده سازی الگوریتم (تنظیم پارامترها)  66

5-6- ارزیابی سایز گردآمدگی بر روی داده‌ی اعتبارسنجی  67

5-7- استخراج مجموعه‌های نمونه‌های آموزشی……. 70

5-8- نتایج یادگیری الگوریتم بر روی مجموعه‌های نمونه‌های آموزشی 72

 

فصل ششم. نتیجه‌گیری

خلاصه­ی مطالب و نتیجه­ گیری………………… 75

 

فهرست منابع و مآخذ……………………… 78

 

فهرست جدول‌ها

جدول شماره 4-1: شرح مفاهیم و معادل ترم‌های مورد استفاده   45

جدول شماره 5-1: مقایسه میانگین خطای الکوریتم­های مختلف weka    64

جدول شماره 5-2: مقایسه خطای الگوریتم بگینگ و رندوم فارست 66

 

فهرست شکل‌ها

شکل 1-1:  معماری کلی مربوط به متدهای یادگیری تجمعی  6

شکل 2-1: معماری کلی الگوریتم بگینگ……….. 14

شکل 2-2:  نمایی کلی از الگوریتم رندوم فارست.. 16

شکل 2-3: معماری کلی مربوط به الگوریتم رندوم فارست   20

شکل 4-1: صفحه‌ی نمایش شبیه ساز ترافیک TSF…… 42

شکل 4-2: نقشه‌ی شهر Warsaw، اعمال شده بهTSF….. 43

شکل 4-3: نمایش نمادین اعمال تکنیک پیشنهادی… 46
شکل 4-4: توزیع جریان‌های ترافیکی مسیرها……. 47
شکل 4-5: ارائه‌ی دید دقیق‌تر در خصوص رفتار جریان‌های ترافیکی    48

شکل 4-6: نمایش نمادین روند انجام مرحله گردآمدگی 50

شکل 4-7: نمودار الزامات معیار شباهت مناسب…. 53

شکل 4-8: جریانهای ترافیکی مسیرها مربوط به دو context    55

شکل 5-1: مثالی از چگونگی اعمال مراحل گردآمدگی 68

شکل 5-2: مقایسه­ی خطا روشها با اعمال سایزهای مختلف گردآمدگی   69

شکل 5-3: مراحل نمادین استخراج مجموعه نمونه آموزشی   71

شکل 5-4: مقایسه خطای تکنیک پیشنهادی و روش Ensemble RF

چکیده

امروزه موفقیت سیستم­های حمل­و­نقل هوشمند، نه تنها به اطلاعات وضعیت فعلی ترافیک، بلکه تا حد زیادی به آگاهی از وضعیت ترافیکی دقایق آینده وابسته است. از این­رو، تحقیقات زیادی در زمینه­ی پیش­بینی­ کوتاه­­مدت وضعیت ترافیکی انجام شده است. هرچند تاکید اکثریت آنها، تنها بر روی اعمال الگوریتم­های مختلف بمنظور یادگیری داده­های ترافیکی و ارائه­­ی مدل، بر اساس داده­های جمع­آوری شده از وضعیت فعلی و پیشین می­باشد. حال آنکه، در جهت رسیدن به الگوریتمی کارا، لازم است تا ماهیت نوساناتی و وابسته به زمان داده­ها نیز در روند یادگیری مدل لحاظ شود. در این راستا، این پایان­نامه با مطالعه­ی توزیع جریان­های ترافیکی، سعی در جداسازی رفتارهای مربوط به پریودهای اوج و غیر­اوج ترافیکی و همچنین استفاده از مفاهیم و دانش بدست­آمده برای آموزش مدل­های متمایز متناظر با رفتارهای مختلف ترافیکی دارد. شایان ذکر است که حتی در صورتی­که زمان مرتبط با داده‌ها صریحاً در اختیار نباشد، روش پیشنهادی با بررسی توزیع داده­، روند جریان‌های ترافیکی را تشخیص می­دهد. بدین ترتیب، رندوم فارست بعنوان مدل پیش­بینی­کننده، از زمینه­ی داده­ی مورد آموزش باخبر بوده و بر این اساس احتمال گیر­اُفتادن آن در بهینه­ی محلی کمتر می­شود. به منظور ارزیابی روش ارائه شده، آزمایشاتی بر روی داده­­ی بخش ترافیک مسابقه بین­المللی داده­کاوی سال 2010 انجام شد. نتایج حاصل، مؤید کارایی و مقیاس­پذیری روش پیشنهادی در مقایسه با دیگر نتایج بدست آمده توسط تیم­های برتر مسابقه، می­باشد.
مقدمه

1-1    تعریف مسئله

امروزه، با توجه به گسترش روزافزون مطالبات حمل‌ونقل و بروز مشکلات ناشی از افزایش ترافیک شهری، ازجمله آلودگی هوا، آلودگی صوتی، مصرف سوخت، اتلاف وقت و انرژی و هزینه‌های تحمیلی آنها، ارائه راهکار مناسب درجهت روان شدن ترافیک از اهمیت ویژه‌ای برخوردار است. از طرفی باتوجه به محدودیت‌های امکانات شهرسازی در مقابل تقاضای انبوه وسایل نقلیه، لازم است تا تمهیداتی کاربردی و امکان‌پذیر برای حل این معضل درنظر گرفته ‌شود. ازآنجا که تاکنون فناوری اطلاعات[1] نقش مؤثری درعرصه‌های مختلف

صنعتی ایفا کرده است،

برای دانلود متن کامل پایان نامه اینجا کلیک کنید



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 660
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()