نوشته شده توسط : admin

عنوان :تشخیص خودکار نوع مدولاسیون دیجیتال در سیستم¬های

OFDM

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی برق گرایش مخابرات

 

تشخیص خودکار نوع مدولاسیون دیجیتال در سیستم­های OFDM

 

استاد راهنما:

دکتر عطاالله ابراهیم زاده شرمه

 

اساتید مشاور:

دکتر محمدرضا ذهابی

دکتر بیژن عباسی آرند

 

 

 

 

1393  

 

 

تکه هایی از متن به عنوان نمونه :

چکیده

تشخیص مدولاسیون را می­توان یکی از بخش­های اصلی گیرنده­های نوین مخابراتی دانست. شناساگر خودکار نوع سیگنال، عمل تعیین نوع مدولاسیون سیگنال دریافتی را در بین مجموعه­ای از مدولاسیون­ها به صورت خودکار انجام می­دهد. اکثر سیستم­های شناساگر خودکار نوع مدولاسیون در تشخیص تعداد بالای مدولاسیون عمل­کرد نامناسبی داشته و نیز در شرایط سیگنال به نویز پایین، بازدهی کمی دارند. این نوع سیستم­ها جهت تشخیص، نیاز به تعداد بالایی از ویژگی­های کلیدی دارند. به­دلیل کاربرد روزافزون سیگنال دیجیتال در مخابرات و تلاش جهت انتقال اطلاعات با نرخ بالا در سیستم­های مبتنی بر OFDM، در این پژوهش، تلاش شده است تا با انتخاب ویژگی­های بسیار کارا و استفاده از طبقه­بندی کننده­ی موثر، شناساگر مناسبی ارائه داده شود. در شناساگر پیشنهادی در بخش استخراج ویژگی، از ویژگی­های آمارگان مرتبه­ی بالا (ممان­ها وکومولان­ها تا مرتبه­ی هشتم) براساس طبقه­بندی کننده­ی ماشین بردار پشتیبان استفاده شده است. لازم به ذکر است در این پایان­نامه به صورت محدود از OFDM بهره برده و تاثیر سیستم OFDM بر ویژگی­های آمارگان مرتبه­ی بالا مورد بررسی قرار گرفت. در این پایان­نامه، جهت افزایش کارایی سیستم و کاهش همبستگی میان ویژگی­ها، برای اولین­بار در این حوزه، ترکیب خطی ویژگی­ها، به عنوان روشی جدید ارائه داده شده، سپس برای بهینه­سازی این ترکیب، از الگوریتم بهینه­سازی فاخته استفاده گردیده است. شناساگر پیشنهادی در سیگنال به نویز dB10- ، به درصد موفقیت %98.33 دست یافته است. مدولاسیون­هایی که در این پژوهش مورد بررسی قرار گرفته عبارتند از: 4ASK، 8ASK، 2PSK ،4PSK ،8PSK، 16QAM، 64QAM، 128QAM،256QAM و V29.

واژه‌های کلیدی: تشخیص خودکار نوع مدولاسیون، ترکیب خطی بردار ویژگی، تشخیص الگو، سیستم OFDM، کانال محوشونده، ماشین بردار پشتیبان.

 

 

 

 

 

 

 

 

صفحه فهرست مطالب عنوان
1 پیشگفتار
3 1- مقدمه­ای بر سیستم شناسایی خودکار نوع مدولاسیون
3 1-1- آشنایی با سیستم شناسایی خودکار نوع مدولاسیون و برخی از کاربردهای آن
3 1-1-1- سیر تحول و توسعه سیستم های مخابراتی دیجیتال
6 1-1-2- اهمیت و کاربردهای سیستم شناسایی نوع مدولاسیون
8 1-2- سیر تکامل روش های شناسایی نوع مدولاسیون
8 1-3- دسته بندی کلی روش­های خودکار شناسایی نوع مدولاسیون
10 1-4- مروری بر تحقیقات گذشته
12 1-5- جمع‌بندی و ساختار پایان‌نامه
14 نتیجه گیری
15 2- انتخاب ویژگی‌های مرتبه بالا و مطالب مورد نیاز
15 مقدمه
15 2-1- مروری بر مدولاسیون های دیجیتال
17 2-2- مفهوم استخراج ویژگی
18 2-3- ممان­ها و کومولان­های مرتبه‌ی بالا
18 2-3-1 ممان ها
28 2-3-2-کومولان­ها
37 2-4- مطالب مورد نیاز
37 2-4-1- کانال چند مسیری
39 2-4-2- سیستم OFDM
39 2-4-2-1- تاریخچه مدولاسیون OFDM
40 2-4-2-2-   مفهوم مالتی پلکسینگ
41 2-4-2-3-   معرفی مدولاسیون OFDM
43 2-4-2-4-   مدل OFDM
45 2-4-2-5- مزایا و معایب OFDM
46 2-4-3- ماشین بردارهای پشتیبان (SVM)
46 2-4- 3-1- SVM خطی و غیرخطی
51 2-4-3-2- SVM چند کلاسه
51 2-4-4-   الگوریتم بهینه‌سازی فاخته (COA)
52 2-4-4-1- زندگی و تخم‌گذاری فاخته
53 2-4-4-2- جزییات الگوریتم بهینه‌سازی الهام گرفته از فاخته
57 نتیجه‌گیری
59 3- معرفی روش پیشنهادی و نتایج شبیه­سازی­ها
59 مقدمه
59 3-1- الگوریتم فاخته در بهینه سازی عمل­کرد سیستم استخراج ویژگی
59 3-1-1- انتخاب ویژگی
62 3-1-2- روش پیشنهادی جهت بهبود عمل­کرد سیستم استخراج ویژگی
63 3-1-2- نحوه به کارگیری الگوریتم فاخته به منظور انتخاب ویژگی
64 3-2- نتایج شبیه­سازی
65 3-2-1- شناسایی نوع مدولاسیون به کمک تمام ویژگی­ها (آمارگان مرتبه­ی بالا)
66 3-2-1-1- نتایج شبیه‌سازی به کمک طبقه‌بندی کننده SVM در کانال AWGN
69 3-2-1-2- نتایج شبیه‌سازی به کمک طبقه‌بندی کننده SVM در کانال­های محوشونده
74 3-2-2- نتایج شبیه سازی به کمک سیستم استخراج ویژگی پیشنهادی
89 3-3- مقایسه عمل­کرد سیسستم پیشنهادی با کارهای انجام شده در این زمینه
90 3-4- نتیجه گیری
92 4- جمع بندی و پیشنهاد ادامه کار
92 4-1- جمع بندی
95 4-2- پیشنهادات
96 پیوست­ها
100 منابع و ماخذ
   
   
   

 


پیشگفتار

 

 

 

 

پیشگفتار

امروزه شبیه سازی سیستم­های مخابراتی با توجه به پیچیدگی روز به روز تجهیزات، از اهمیت بالایی برخوردار است. مطالعه و بررسی عمل­کرد یک سیستم با روش های تحلیلی، سخت و گاهی غیر ممکن بوده و بررسی عمل­کردهای سیستم مخابراتی مدرن، بدون استفاده از شبیه سازی، ساخت نمونه آزمایشی را اجتناب ناپذیر می­کند. اما علیرغم­ هزینه­های بالای ساخت یک نمونه آزمایشی، هزینه­های آزمایش در شرایط مختلف چندین برابر هزینه شبیه­سازی کامپیوتری خواهد بود. علاوه بر آن شبیه سازی کامپیوتری شرایطی را مورد بررسی قرار می­دهد که تولید همه­ی آن شرایط شبیه­سازی عملا با یک نمونه­ی ساخته شده، امکان پذیر نیست و ممکن است فراهم نبودن بسترهای زیرساختی، موجب ایجاد شکافی بزرگ میان مباحث تئوری و پیاده سازی عملی شود. دلایل ذکر شده و نیز سهل الوصول بودن استفاده از کامپیوتر، به طور منطقی بر محبوبیت شبیه­سازی می­افزاید.

یک بخش بسیار مهم در تمامی سیستم­های مخابراتی، بخش بازیابی اطلاعات در گیرنده است. اهمیت این بخش زمانی روشن می­گردد که بنا به هر دلیلی، گیرنده از محتوی نوع سیگنال ارسالی در فرستنده و نیز شرایط کانال اطلاع نداشته باشد. تاکنون روش­های مختلفی برای تشخیص خودکار نوع مدولاسیون دیجیتال پیشنهاد شده است که هر کدام، در شرایط گوناگون سعی در ارائه روشی خودکار برای شناسایی نوع مدولاسیون داشته­اند. روش­های ارائه شده در دو روش کلی خلاصه می­شوند: روش­های مبتنی بر نظریه­ی تصمیم (با معیارهای آماری) و روش­های مبتنی بر تشخیص الگو.

با توجه به سادگی و تعمیم­پذیری روش­های مبتنی بر تشخیص الگو در این پایان­نامه به دنبال ارائه روشی هستیم تا با آن بتوان ویژگی­های کارایی را از سیگنال استخراج و انتخاب نموده و سپس با استفاده از مفاهیم تشخیص الگو، نوع مدولاسیون را تشخیص دهیم. در بیشتر سیستم­های پیشنهاد شده­ی قبلی، همواره ویژگی­هایی از سیگنال دریافتی در گیرنده استخراج می­گردد. این ویژگی­ها در مرحله­ی بعدی به واحد دیگری به نام واحد طبقه­بندی­کننده تحویل داده می­شود. طبقه­بندی­کننده ابتدا درصدی از این ویژگی­­ها را برای تمامی کلاس­ها انتخاب نموده و براساس آنها، فرآیندی موسوم به فرآیند آموزش داده­ها را، پیاده­سازی می­کند. در حالت آموزش، شناساگر عموما، فضای بردار ویژگی را با شاخص­هایی بین کلاس­ها تقسیم می­نماید. سپس در حالت آزمایش، طبقه بندی کننده، براساس درصد باقی مانده از سیگنال­ها، ویژگی­ها را با این شاخص­های عمل­کردی می­سنجد. کارایی سیستم در این حالت، تابعی براساس درصد تشخیص صحیح سیستم است. هر چقدر ویژگی­ها از نظر مفاهیم آماری (میانگین، واریانس و غیره) در دو حالت آموزش و تست برای هر کلاس، پایدارتر بوده و نیز نسبت به دیگر کلاس­ها همبستگی کمتری داشته باشند؛ قدرت تشخیص شناساگر، بیشتر خواهد بود. متناظرا هر سیستمی که به داده­های کمتری برای آموزش و آزمایش نیاز داشته باشد قابلیت بیشتری دارد و اصطلاحا نسبت به داده­های ندیده مقاوم­تر است.

در روش­های شناسایی قبلی که مبتنی بر تشخیص الگو هستند ویژگی­هایی از سیگنال استخراج شده و بعد از آن این ویژگی­ها با شناساگری که درصد تشخیص بهتری را ارائه می­داد، مورد ارزیابی قرار می­گرفت. تقریبا در تمامی کارهای گذشته برای کاهش ابعاد ویژگی و نیز کاهش پیچیدگی سیستم، روش­هایی برای انتخاب ویژگی پیشنهاد می­گردید. در این روش­ها عموما از الگوریتم­های تکاملی برای جستجوی سراسری فضای ویژگی استفاده می­شده و زیر مجموعه­ای از بردار ویژگی که منجر به درصد تشخیص بالاتر می­شد به عنوان زیرمجموعه کارا انتخاب می­شد. در پاره­ای از روش­ها نیز از این الگوریتم­ها برای بهینه­سازی تنظیمات مربوط به طبقه بندی کننده­ها استفاده می­شد.

از میان طبقه بندی کننده­های مورد استفاده در روش­های تشخیص الگو می­توان به شبکه­های عصبی مصنوعی، طبقه بندی کننده­های فازی، مدار طبقه بندی کننده آستانه­ای و ماشین بردار پشتیبان اشاره نمود. در بین این شناساگرها، طبقه بند ماشین بردار پشتیبان، به دلیل استفاده از مفاهیم ساختار­محور در کمینه­سازی خطا، همواره با استقبال بیشتری از سوی محققان رو به رو بوده است. در این پایان­نامه نیز این شناساگر، جهت تفکیک سیگنال­های مدولاسیون دیجیتال استفاده شده است.

 

 

 

 

 

فصل اول

مقدمه­ای بر سیستم شناسایی خودکار نوع مدولاسیون

 

مقدمه

این فصل به بررسی سیستم شناسایی خودکار نوع مدولاسیون (نوع سیگنال) و برخی از کاربردهای مهم آن، سیر تکامل شناسایی نوع مدولاسیون، دسته بندی کلی روش­های شناسایی نوع مدولاسیون، کارهای انجام شده توسط دیگران، و هدف از انجام این پایان­نامه می­پردازد.

  • آشنایی با سیستم شناسایی خودکار نوع مدولاسیون و برخی از کاربردهای آن

به سیستمی که عمل تعیین نوع مدولاسیون سیگنال دریافتی را، در بین مجموعه­ای از مدولاسیون­ها به صورت خودکار و هوشمند به عهده دارد؛ شناساگر خودکار نوع سیگنال گفته می­شود. به سبب آنکه سیستم با تغییر شرایط کانال، خود را وفق می­دهد به این نوع سیستم­ها، سیستم هوشمند می­گویند. فرآیند باز­شناخت مدولاسیون، مرحله­ی قبل از دمدولاسیون است. در سیستم­های مخابراتی هوشمند، در صورت تشخیص غلط نوع و مرتبه مدولاسیون و بکارگیری یک دمدولاتور نامناسب، ممکن است محتوی اطلاعات سیگنال به­طور کامل از دست برود ]1[. تشخیص نوع مدولاسیون هم اکنون یکی از حوزه­های مهم پردازش سیگنال در علم مخابرات بوده و هر ساله تلاش­های مختلفی از سوی محققان سراسر دنیا برای ارائه سیستمی هوشمند که به طور خودکار شناسایی نوع مدولاسیون را انجام می دهد؛ صورت می­گیرد.

  • سیر تحول و توسعه­ی سیستم­های مخابراتی دیجیتال

تلگراف به عنوان اولین سیستم مخابرات الکتریکی یک سیستم مخابراتی دیجیتال بود. تلگراف الکتریکی توسط ساموئل مورس[1] اختراع و در سال 1837 به نمایش گذاشته شد. مورس، کد دودویی با طول متغیری را که در آن حروف الفبای انگلیسی با دنباله­ای از خط­های تیره [2]و نقطه­ها[3] (کلمه کد) نمایش داده می­شد؛ ابداع نمود. در این کد، حروف با تواتر وقوع بالاتر، با کلمات کد کوتاه و حروف با تواتر وقوع کمتر، با کلمات کد بلندتر نمایش داده می­شوند [2].

تقریبا چهل سال بعد از آن، در سال 1875 امیل بودت[4] یک کد دودویی با طول ثابت 5 برای تلگراف ابداع نمود. در کد بودت، اجزای کد دارای طول یکسان بوده و نقطه[5] و فاصله[6] نامیده می­شود. هر چند مورس ابداع کننده­ی اولین سیستم مخابراتی دیجیتال (تلگراف) است، اما سر آغاز آنچه ما امروز به عنوان مخابرات دیجیتال مدرن می­شناسیم به کار نایکویست[7] (1924) بر می­گردد؛ که مسئله حداکثر نرخ داده­ی قابل ارسال روی یک کانال تلگرافی با پهنای باند داده شده را بدون وقوع تداخل بین سمبل­ها بررسی نمود. نایکویست معادله­­ی (2-1) را برای سیستم تلگراف پیشنهاد نمود که سیگنال ارسالی آن دارای صورت عمودی زیر است[2].

(1-1)  

که در این معادله بیانگر شکل پالس و دنباله داده­ی دودویی است که با نرخ بر ثانیه ارسال شده است. نایکویست کار خود را با تعیین شکل پالس بهینه با پهنای باند محدود هرتز به گونه­ای آغاز نمود که علاوه بر عدم ایجاد تداخل بین سمبل­ها در لحظات نمونه ­برداری ، نرخ بیت نیز حداکثر شود. مطالعات، وی را به این نتیجه، که حداکثر نرخ ارسال پالس بر ثانیه است رساند، که این نرخ را، نرخ نایکویست می­نامند. دستیابی به این نرخ ارسال با استفاده از شکل پالس مقدور است. این شکل پالس امکان بازیابی داده را بدون تداخل بین سمبل­ها در لحظات نمونه­برداری فراهم می­کند. نتیجه­ی کار نایکویست معادل تفسیری از قضیه­ی نمونه­برداری برای سیگنال­های باند محدود است که بعدها توسط شانون[8] (1948) مطرح شد. قضیه­ی نمونه برداری چنین بیان می­دارد که سیگنال باند محدود را می­توان از روی نمونه­های برداشته شده با نرخ نایکویست نمونه در ثانیه با استفاده از فرمول درون­یابی زیر بازسازی نمود.

 

(1-2)

 

هارتلی[9] با الهام از کار نایکویست (1928) مسئله نرخ ارسال مطمئن داده روی یک کانال دارای پهنای باند محدود را با استفاده از سطوح دامنه­ی چندگانه بررسی نمود. هارتلی از این قیاس منطقی که گیرنده با وجود نویز و تداخل می­تواند دامنه­ی سیگنال دریافتی را با دقت معینی مثلا با اطمینان تخمین بزند استفاده کرد. بررسی­های هارتلی را به این نتیجه رهنمون ساخت که برای ارسال مطمئن اطلاعات روی یک کانال با پهنای باند محدود، وقتی که حداقل دامنه محدود به (قید توان ثابت) و توان تفکیک دامنه سیگنال دریافتی باشد، یک حداکثر نرخ ارسال داده وجود دارد [3]. یک پیشرفت چشمگیر دیگر در توسعه مخابرات دیجیتال، کار وینر[10] (1942) بود که مسئله تخمین شکل موج یک سیگنال دلخواه را در حضور نویز تجمعی و با مشاهده سیگنال دریافتی بررسی نمود. این مسئله در وامدوله­سازی سیگنال مطرح می­شود. وینر یک فیلتر خطی را تعیین نمود که خروجی آن بهترین تقریب سیگنال مورد ­نظر از دید متوسط مجذور است. فیلتر حاصله را، فیلتر خطی بهینه (کولموگارف[11]-وینر) گویند. نتایج هارتلی و نایکویست در مورد حداکثر نرخ ارسال اطلاعات دیجیتال بر کار شانون که به تبیین مبانی ریاضی انتقال اطلاعات و تعیین محدودیت­های پایه­ی سیستم­های مخابرات دیجیتال منجر گردید مقدم بود. شانون در کار پیشگامانه­ی خود مسئله اساسی انتقال مطمئن اطلاعات را در یک قالب آماری و با استفاده از مدل­های احتمالی برای منابع اطلاعات و کانال­های مخابراتی فرمول­بندی نمود. همچنین نشان داد که اثر محدودیت توان فرستنده، محدودیت پهنای باند و نویز تجمعی را می­توان با کانال مرتبط نموده و در یک پارامتر واحد به نام ظرفیت کانال جای داد. به عنوان مثال در مورد یک نویز تجمعی گوسی سفید (طیف صاف)، ظرفیت یک کانال ایده­آل با پهنای باند محدود برابر است با:

(1-3)  

که در آن متوسط توان ارسالی و چگالی طیفی توان نویز تجمعی است. مفهوم ظرفیت کانال به شرح زیر است: اگر نرخ اطلاعات منبع کمتر از ظرفیت باشد؛ در این­صورت از نظر تئوری امکان انتقال مطمئن اطلاعات (بدون خطا) از طریق این کانال با انتخاب شیوه­ی مناسب کدگذاری وجود دارد. از طرف دیگر اگر باشد مستقل از میزان پردازش انجام‌شده در فرستنده و گیرنده، امکان انتقال مطمئن وجود ندارد. در نتیجه شانون حدود اساسی انتقال اطلاعات را تبیین و حوزه­ی جدیدی به نام تئوری اطلاعات[12] را بنیان نهاد[3]. کار مهم دیگر در زمینه مخابرات دیجیتال مربوط به کوته لینکف[13] (1947) است که بر مبنای یک رویکرد هندسی[14] سیستم­های مختلف مخابرات دیجیتال را به صورت هماهنگ تجزیه و تحلیل نمود. کار او بعدها توسط وزنکراف[15] و جاکوبس[16] (1965) توسعه داده شد. متعاقب کار شانون، نوبت به کار کلاسیک همینگ[17] در مورد کدهای تصحیح و تشخیص خطا برای مقابله با اثرات تخریبی نویز کانال رسید. کار همینگ در سال­های بعد زمینه‌ساز تحقیقات گسترده­ای شد که منجر به کشف کدهای متنوع و قدرتمند جدیدی گردید، و بسیاری از آن‌ها در پیاده­سازی سیستم­های مخابراتی مدرن امروزی به کار می­روند. افزایش تقاضا برای انتقال اطلاعات در سه تا چهار دهه­ی گذشته، به همراه توسعه­ی مدارهای مجتمع پیشرفته­تر، به پیدایش سیستم­های مخابراتی بسیار کارآمد و مطمئن منجر گشته است. در جریان این تحولات نتایج اصلی شانون و تعمیم آن نتایج در مورد حداکثر سرعت انتقال روی کانال و حدهای عمل­کرد قابل دستیابی، نقش شاخص­های مرجع برای طراحی سیستم­های مخابراتی را داشته­اند. دستیابی به حدود تئوری استخراج‌شده توسط شانون و سایر محققان مشارکت‌کننده در توسعه تئوری اطلاعات، هدف غایی تلاش­های مستمر در زمینه­ی طراحی و توسعه سیستم­های مخابراتی دیجیتال کارآمدتر، است[3]. گسترش کاربرد مخابرات دیجیتال و فراهم شدن عرصه‌های گوناگون طراحی و ساخت سیستم­های پیچیده مخابراتی، زمینه را برای ارائه راه‌حلی جامع و هوشمند جهت شناسایی خودکار پیام‌های دریافتی فراهم، و ضرورت رویکرد تحقیقات علمی به این حوزه را لازم نمود.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 693
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

نوان :تشخیص کور پارامترهای اسکرمبلرهای مبتنی بر LFSR، درداده‌های دیجیتالی

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

دانشکده مهندسی برق و کامپیوتر

 

پایان‌نامه کارشناسی ارشد در رشته

مهندسی برق

مخابرات- سیستم

 

 

تشخیص کور پارامترهای اسکرمبلرهای مبتنی بر LFSR، درداده‌های دیجیتالی

 

 

اساتید راهنما:

دکتر عزیزاله جمشیدی

دکتر محمود فرهنگ

 

 

اسفند ماه ۱۳۹3

تکه هایی از متن به عنوان نمونه :

چکیده

تشخیص کور پارامترهای اسکرمبلرهای مبتنی بر LFSR، در داده‌های دیجیتالی

به کوشش

زهرا ذاکری

در سیستم‌های مخابراتی دیجیتال از اسکرمبلرهای خطی هم برای رمزنگاری ساده و هم برای شکستن توالی زیادی از بیت‌های یکسان استفاده می‌شود. موضوع توالی بیت ها، یعنی تعدد زیادی از صفرها و یک‌های پشت سرهم، معمولاً منجر به مشکلاتی در سنکرون سازی می‌شود. در واقع روش‌های سفید کردن آماره‌های منبع دیجیتالی بدون استفاده از داده‌های حشویات تحت عنوان اسکرمبلینگ بیان می‌شود. در مخابرات و دی‌کد کننده‌ها، اسکرمبلر دستگاهی است که داده‌ها را قبل از ارسال دستکاری می‌کند و آنها را تغییر می‌دهد. این تغییرات در گیرنده به طور معکوس انجام می‌شود تا به داده‌ی اولیه برسیم.

در این پایان‌نامه پس از معرفی اسکرمبلر و اجزای تشکیل دهنده‌ی آن به بررسی روش‌های یافتن پارامترهای اسکرمبلر در دو حالت در دست داشتن دنباله متن ورودی (روش برلکمپ-مسی) و حالت دیگر داشتن فقط دنباله‌ی اسکرمبل شده (الگوریتم کلوزیو)، پرداخته می‌شود و نتایج آن مورد بررسی قرار می‌گیرد. پس از آن حالتی را در نظر می‌گیریم که داده‌های اسکرمبل شده پس از عبور از کانال دچار خطا شده و در حضور نویز کانال به شناسایی پارامترهای اسکرمبلر می‌پردازیم و اثر نویز را روی داده‌های خروجی از دو نوع اسکرمبلر(اسکرمبلرهای ضربی و اسکرمبلرهای جمعی) مشاهده می‌کنیم. پس از آن به بررسی روش شناسایی چندجمله‌ای فیدبک اسکرمبلرهای خطی با فرض اینکه بیت‌های منبع قبل از اینکه اسکرمبل شوند توسط کدینگ اصلاح خطا کدگذاری شده‌اند، می‌پردازیم.

 

واژگان کلیدی: اسکرمبلر، ثبات‌های انتقال خطی با پسخورد ، رمزنگاری، کانال دودوئی متقارنBSC، شنود سیگنال

 

 

 

 

فهرست مطالب

عنوان                                                                               صفحه

فصل 1- مقدمه 2

1-1- اسکرمبلر چیست و چرا از آن استفاده می کنیم؟ 2

1-2- مزایای استفاده از اسکرمبلینگ قبل از ارسال داده 3

1-3- دنباله‌های شبه تصادفی 4

1-4- معیارهای میزان تصادفی بودن یک دنباله 5

فصل 2- تئوری عملکرد شیفت‌رجیسترهای خطی با پسخورد 8

2-1- ترکیب و ساختار شیفت رجیسترها 8

2-2- سنتز الگوریتم LFSR 11

2-3- نمایش کلاسیک دنباله های LFSR 18

2-4- شبیه‌سازی و نتایج مربوط به اجرای الگوریتم برلکمپ-مسی بر روی دنباله خروجی LFSR 21

فصل 3- شناسایی پارامترهای اسکرمبلرهای خطی 25

3-1- تشخیص پارامترهای اسکرمبلر با استفاده از دنباله متن ورودی x(t) 28

3-2- تشخیص پارامترهای اسکرمبلرجمعی فقط با استفاده از بایاس متن ورودی 29

3-3- تشخیص پارامترهای اسکرمبلرضربی فقط با استفاده از بایاس متن ورودی 39

3-4- الگوریتم کلوزیو اصلاح شده 42

3-5- نتایج شبیه‌سازی الگوریتم کلوزیو روی اسکرمبلرهای ضربی و جمعی 50

فصل 4- شناسایی پارامترهای اسکرمبلر در حضور نویز کانال 54

4-1- تشخیص اسکرمبلر زمانی‌که نویز به صورت بیت‌های تغییریافته باشد 54

4-2- شناسایی اسکرمبلر زمانی‌که درج بیت به صورت نویز در دنباله رخ دهد 59

3-3- نتایج شبیه‌سازی شناسایی چندجمله‌ای اسکرمبلرها در حضور نویز کانال 65

فصل 5- شناسایی پارامترهای اسکرمبلر با استفاده از کلمه دوگان انکدر کانال 68

5-1- محاسبه بایاس بعد از کدینگ کانال 69

5-2- بازسازی چندجمله‌ای فیدبک اسکرمبلر بعد از عبور از کدینگ کانال 71

5-3- نتایج مربوط به شناسایی اسکرمبلر قرار گرفته پس از انکدر بلوکی 79

نتیجه‌گیری………………………………………………………………………………………………………..89

منابع……………………………………………………………………………………………………………………91

چکیده و عنوان انگلیسی……………………………………………………………………………………93

 

فصل اول

 

فصل 1-

مقدمه

مقدمه

1-1- اسکرمبلر چیست و چرا از آن استفاده می کنیم؟

یک سیستم انتقال داده دیجیتالی همواره در ارسال داده‌ها آنها را دچار خطا و آسیب می‌کند که مقدار این اختلالات و آسیب‌ها بسته به آماره‌های منبع تغییر می‌کند. گاهی اوقات همزمان‌سازی، تداخل و مشکلات اکولایز کردن به آماره‌های منبع مربوط می‌شود. اگرچه استفاده از حشویات در ارسال کدها تا حدی عملکرد سیستم را از آماره‌های منبع مستقل می‌کند اما همواره وابستگی‌هایی وجود دارد به علاوه اضافه کردن داده‌های حشویات باعث مشکلاتی از قبیل افزایش نرخ سمبل‌های ارسالی و یا اضافه شدن تراز در سمبل‌ها می‌شود. در یک سیستم ارسال کد اگر فرض کنیم سمبل‌های ارسالی از نظر آماری از هم مستقل هستند آنالیز و خطایابی آن بسیار آسان‌تر خواهد شد. به چنین منبعی که سمبل‌های آن از نظر آماری از هم مستقل هستند منبع سفید می‌گوییم چرا که آنالیز آن مانند نویز سفید گوسی است. روش‌های سفید کردن آماره‌های منبع دیجیتالی بدون استفاده از داده‌های حشویات تحت عنوان اسکرمبلینگ[1] بیان می‌شود. در مخابرات و دی‌کد کننده‌ها، اسکرمبلر[2] دستگاهی است که داده‌ها را قبل از ارسال دستکاری می‌کند و آنها را تغییر می‌دهد. این تغییرات در گیرنده به طور معکوس انجام می‌شود تا به داده‌ی اولیه برسیم. انواع روش‌های اسکرمبلینگ در ماهواره و مودم‌های [3]PSTN مورد استفاده قرار می‌گیرد. اسکرمبلر را می‌توان درست قبل از یک کدگذار FEC[4] قرار داد یا اینکه می‌توان پس از FEC و قبل از بلوک مدولاسیون قرار داد.

سعی ما در این پژوهش بر این است که روش‌ها و تکنیک‌های مختلف در شناسایی پارامترهای اسکرمبلر‌های خطی را مورد بررسی قرار دهیم. این کار با داشتن رشته بیت‌های خروجی و بر اساس فرضیه‌هایی روی بیت‌های ورودی اسکرمبلر انجام می‌شود. البته شخصی که این کار را با استفاده از بیت‌های خروجی انجام می‌دهد باید دو مقوله را در نظر بگیرد ابتدا اصلاح خطا و سپس استخراج پارامترهای اسکرمبلر. با توجه به خطی بودن اسکرمبلرهای مورد بحث، استفاده از روش‌های جبری برای تخمین پارامترهای اسکرمبلر کارآمدترین روش‌ می‌باشد. خصوصاً شیفت رجیسترهای خطی با پسخورد که تابع فیدبک آنها تابعی خطی می‌باشد که در ادامه بیشتر در این باره توضیح داده شده است.

1-2- مزایای استفاده از اسکرمبلینگ قبل از ارسال داده

  1. با این روش بدون اضافه کردن داده‌ی حشویات به پیام ارسالی، می‌ توان در تجهیزات گیرنده دقت Time Recovery را افزایش داد.
  2. با پراکنده نمودن انرژی در کل سیگنال حامل، احتمال تداخل سیگنال‌های حامل را کاهش می‌دهد و وابستگی چگالی طیفی بین داده‌های اسکرمبل شده و داده‌های واقعی ارسال شده را از بین می‌برد.
  3. امنیت ارسال داده را بالا می‌برد و در رمزنگاری می‌توان از اسکرمبلرها استفاده کرد. چرا که حالت ایده‌آل یک متن رمز شده این است که یک دنباله‌ی کاملاً تصادفی باشد. به عبارتی بیت‌های دنباله از یکدیگر کاملاً مستقل باشند و احتمال صفر و یک بودن برابر باشد و بتوان از روی کلیدی محدود و کوتاه، دنباله‌ای طویل و [5]i.d تولید نمود.

1-3- دنباله‌های شبه تصادفی

به منظور شبیه سازی و تست سیستم‌های ارتباطی دیجیتال، به دنباله‌هایی که تقریبی ازدنباله های تصادفی دودویی ایده آل می‌باشند نیاز داریم. در تولید دنباله شبه تصادفی دودویی از شیفت رجیسترهای خطی فیدبکی استفاده می کنیم. می توان با یک تغییر ساده در این مدارها از آنها به عنوان اسکرمبلر/دی اسکرمبلر های خود سنکرون دیجیتال استفاده کرد. اسکرمبلر ها با شکستن رشته طولانی 0 یا 1در داده ها اجازه می دهند تا حلقه های ردیابی در گیرنده به شکل مخفی و پنهان حفاظت و نگهداری شود.
اگر نرخ داده بسیار بالا باشد، این اسکرمبلر ها و دی اسکرمبلر ها را می توان با مدارهای ساده ساخت. در نرخ متوسط داده ها ​​مانند مودم خط تلفن ، آن را می توان با چند خط کد ساده اجرا کرد. ترکیب این تابع وسایر ویژگی های آن به کد ، می توان سخت افزارهای اضافی را از میان می برد. این روش قابلیت اطمینان را افزایش و هزینه های تولید را کاهش می دهد.

یک دنباله تصادفی دودویی ایده آل در واقع یک دنباله نامتناهی مستقل و دارای توزیع یکنواخت است که متغیرهای تصادفی در آن هر یک از مقادیر 0 یا 1 را با احتمال 0.5 می‌پذیرند. این دنباله را می توان با رشته داده های تولید شده توسط منابع دودویی مدل کرد. با شیفت رجیسترهای خطی فیدبکی می‌توان به بهترین تقریب برای دنباله های تصادفی دودویی دست یافت. دنباله‌ی به دست آمده به این روش شبه تصادفی ، شبه نویز ، حداکثرطول ، یا دنباله نامیده می‌شوند.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 616
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :جهت یابی سیگنال¬های پهن باند در سیستم های مخابراتی

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

موضوع:

جهت یابی سیگنال­های پهن باند در سیستم های مخابراتی

DOA Estimation For Wideband Signals In Communication Systems

 

 

استاد راهنما:

دکتر مهرزاد بیغش

دکتر عباس شیخی

 

 

 

اساتید مشاور:

دکتر محمود کریمی

دکتر مصطفی درختیان

تکه هایی از متن به عنوان نمونه :

فهرست مطالب

عنوان                                                        صفحه

 

چکیده 1

مقدمه 2

 

فصل اول : اصول انتشار امواج

1-1- مقدمه 4

1-2- انتشار امواج 4

1-3-سنسورهای آرایه ای 6

1-4- پردازش سیگنال آرایه خطی 7

1-4-1- فرضیات پایه 7

1-4-1-1- میدان دور 7

1-4-1-2- سیگنال باند باریک 7

1-4-1-3- ایستائی 8

1-4-1-4- سیگنال های چندگانه 8

1-4-1-5- نویز (Noise) 8

1-5- تبدیل مکان – زمان 9

1-6- سیگنال های تصادفی 10

 

فصل دوم: روش های پردازش سیگنال های باند باریک

2-1-مقدمه 15

2-2-روش های مبتنی بر پایه طیف 15

2-3-روش های شکل دهی پرتو 15

2-3-1-روش شکل دهی پرتو متعارف 15

2-3-2- روش کاپون 17

2-3-3- روش های مبتنی بر زیر فضا 19

2-3-4-معرفی روش 20

2-3-5- الگوریتم 21

2-3-6- معرفی روش 23

2-3-7-مدل داده ها 25

2-3-8- الگوریتم ESPIRIT 28

2-4-آنتن های آرایه ای 31

2-5- مدل سیگنال 35

2-6- ماتریس کوواریانس 36

 

فصل سوم: جهت یابی سیگنال های پهن باند

3-1- مقدمه 39

3-2- معرفی سیگنال های باند پهن 39

3-3- معرفی تکنیک های مختلف جهت یابی سیگنال های باند پهن 41

3-3-1- مدلسازی داده های باند پهن 41

3-3-2- معرفی اجمالی روش های جهت یابی سیگنال های باند پهن با استفاده از بانک فیلتر 42

3-3-3- مدل فرکانسی سیگنال باند پهن 44

3-3-4- الگوریتم های مختلف جهت یابی سیگنال های پهن باند 47

3-3-5- روش های جهت یابی ناهمبسته 47

3-3-6- روش های ناهمبسته فرکانسی 48

3-3-7- فرم دهنده بیم به روش کاپون 48

3-3-8- میانگین گیری حسابی 51

3-3-9- روش میانگین گیری هندسی 52

3-3-10- روش میانگین گیری هارمونیک 53

3-3-11- الگوریتم موزیک پهن باند 53

3-3-12- الگوریتم وزن دهی مناسب زیرفضاها 55

3-3-13- محاسبه تخمین به روش 58

3-3-14- ملاحظات عملی در روش 60

3-3-15- روش های جهت یابی همبسته زیرفضایی( ) 62

3-3-16- روش ماتریس تمرکز قطری 62

3-3-17- روش زیرفضای چرخشی سیگنال 64

3-3-18- استفاده از ماتریس کانونی در روش 66

3-3-19– روش وزن دهی متوسط به زیر فضاهای سیگنال( ) 67

 

فصل چهارم:‌الگوریتم TOPS

4-1- مقدمه 70

4-2- مفاهیم پایه 70

4-3- ارائه یک مدل ریاضی 71

4-4- توسعه الگوریتم به فضای چند بعدی 76

4-5- تصویر در راستای زیرفضای سیگنال 78

4-6- الگوریتم محاسبه 80

4-6-1- پیچیدگی محاسبات 81

 

فصل پنجم:‌شبیه سازی الگوریتم های تخمین DOA

برای آرایه های خطی 83

5-1- مقدمه 84

5-2- الگوریتم های تخمین 84

5-2-1- معرفی اجمالی الگوریتم های به کار رفته در شبیه سازی 84

5-2-1-1- بررسی الگوریتم MUSIC و Capon 85

5-2-1-2- الگوریتم همبستگی زیرفضای سیگنال( ) 86

5-2-1-3- ماتریس زیرفضای کانونی سیگنال ( ) 88

5-2-1-3-1- الگوریتم محاسبه روش 89

5-2-1-3-2-نکات مهم در محاسبه تخمین به روش 90

5-3- مدل سازی داده ها 91

5-3-1- خصوصیات منبع سیگنال ارسالی 91

5-3-2- مفروضات داده های دریافتی توسط آرایه آنتن 92

5-4- سناریوهای شبیه سازی شده……………………. 92

5-4-1- سناریوی شماره 1 92

 

 

فصل ششم: نتیجه‌گیری و پیشنهادات

6-1- نتیجه‌گیری………………………………. 122

6-2- پیشنهادات ……………………………… 123

مراجع 121

 

چکیده:

 

جهت یابی سیگنال­های پهن باند

DOA Estimation for Wideband Signals

یکی از مهم­ترین کاربردهای آرایه ها، تحمین جهت یابی سیگنال­های انتشار یافته درمحیط می باشد. بسیاری از روش­های جهت یابی از دیرباز مورد استفاده قرار می­گیرند که به مرور زمان تغییراتی در آن­ها صورت گرفته است. بسته به شرایط محیط، ممکن است یکی از روش­های جهت یابی عملکرد بهتری نسبت به سایر روش­ها داشته باشد. نکته­ای که مطرح است اینکه اغلب روش­های جهت یابی برای سیگنال­های باریک باند طراحی شده­اند. در عمل ممکن است سیگنال­هایی که در محیط وجود دارند یا پهن باند باشند و یا اینکه در بین­های فرکانسی مختلفی قرار داشته باشند.یکی از متداول ترین روش­ها در جهت یابی سیگنال­های پهن باند این است که سیگنال پهن باند را به بین­های مختلف فرکانسی تفکیک نموده و سپس پردازش­های لازم را در حوزه فرکانس انجام دهیم. بر این اساس روش­های مختلفی برای جهت یابی سیگنال­های پهن باند بیان شده است.در برخی از روش­ها جهت یابی هر بین فرکانسی به صورت مستقل از سایر بین­ها پردازش می گردد، که به روش­های ناهمبسته مشهور هستند. برخی دیگر از روش­ها اطلاعات بین­های مختلف فرکانسی را به صورتی با یکدیگر ترکیب می­کند و سپس جهت یابی را انجام می­دهد (روش­های همبسته). مشکل بزرگ روش­های همبسته این است که بایستی در ابتدا تخمین اولیه­ای از زوایای ورود منابع داشته باشیم. برخی از روش­ها نیز هستند که ماهیت آن­ها متفاوت از روش­های همبسته و ناهمبسته است و می­توان گفت حالت بین این دو روش هستند. از جمله این روش­ها می­توان به TOPS[1] اشاره کرد. که برای رفع مشکل تخمین اولیه زوایا در روش­های همبسته معرفی شده است.هدف از این پایان نامه بررسی روشهای مختلف جهت یابی سیگنالهای پهن باند و مقایسه نحوه عملکرد هر یک می باشد.

 


مقدمه:

در این فصل از پایان نامه مطالبی به اختصار در جهت آشنایی با مفاهیم پایه میدان‌های الکترومغنطیسی، روش‌های مختلف جهت یابی برای سیگنال‌های باند باریک معرفی گردیده و مزایا و چالش‌های اجرا هر یک از این الگوریتم‌ها مورد بررسی قرار می‌گیرد. (فصل اول و دوم)

یکی از موارد بسیار مهم جهت یابی سیگنال‌ها، کاربرد آن در جهت دهی بین تشعشعی آنتن‌ها به منظور ایجاد حداکثر توان ممکن در جهت هدف می‌باشد همچنین به منظور جهت یابی اهداف در ابتدا می‌بایست زاویه ورود هر سیگنال را به آرایه مشخص نمود. با استفاده از مفاهیم و روش‌های مطرح شده برای سیگنال‌های باند باریک و توسعه آن بر اساس سیگنال‌های باند پهن در فصل سوم به معرفی اگوریتم های مختلف باند پهن ودسته بندی آن پرداخته خواهد شد. یکی از متداول ترین روش­ها در جهت یابی سیگنال­های پهن باند این است که سیگنال پهن باند را به بین­های مختلف فرکانسی تفکیک نموده و سپس پردازش­های لازم را در حوزه فرکانس انجام دهیم. بر این اساس روش­های مختلفی برای جهت یابی سیگنال­های پهن باند بیان شده است.در برخی از روش­ها جهت یابی هر بین فرکانسی به صورت مستقل از سایر بین­ها پردازش می گردد، که به روش­های ناهمبسته مشهور هستند. برخی دیگر از روش­ها اطلاعات بین­های مختلف فرکانسی را به صورتی با یکدیگر ترکیب می­کند و سپس جهت یابی را انجام می­دهد (روش­های همبسته). مشکل بزرگ روش­های همبسته این است که بایستی در ابتدا تخمین اولیه­ای از زوایای ورود منابع داشته باشیم. برخی از روش­ها نیز هستند که ماهیت آن­ها متفاوت از روش­های همبسته و ناهمبسته است و می­توان گفت حالت بین این دو روش هستند(فصل چهارم). از جمله این روش­ها می­توان به TOPS[2] اشاره کرد [16] که برای رفع مشکل تخمین اولیه زوایا در روش­های همبسته معرفی شده است. در فصل آخر با استفاده از شبیه سازی متلب الگوریتم های همبسته ونا همبسته، را پیاده سازی نموده و نتایج و چالش های مطرح شده را مورد بررسی قرار خواهیم داد.

فصل اول

اصول انتشار امواج


 

1-1- مقدمه

در این فصل به صورت خلاصه خروجی آنتن های آرایه ای را پردازش خواهیم نمود. بر این اساس ابتدا میدان انتشار اسکالر[3] آنتن های آرایه ای را توضیح داده و سپس به معرفی سیگنال های باند باریک خواهیم پرداخت و در انتها مدل آرایه ای آنتن ها را در انتقال سیگنال های با پهنای باند گسترده (سیگنال پهن باند) تعریف خواهیم نمود.

 

1-2- انتشار امواج

همان طور که می دانیم بر اساس معادله ماکسول تابع انتشار موج متغیری از زمان و مکان می باشد. لذا معادله موج سیگنال های الکترو مغناطیسی با توجه به معادله ماکسول به صورت زیر تعریف می گردد:

(1-1)

که در آن شدت میدان الکتریکی، سرعت انتشار موج، عملگر لاپلاسین

(1- 2)

و بردار مکان تعریف می گردد. پس از اعمال به عنوان میدان اسکالر عمومی، معادله سیگنال موج ارسالی در لحظه t و موقعیت مکانی بر اساس معادله زیر محاسبه می گردد :

(1- 3)

که جواب معادله دیفرانسیلی بالا (شکل موج دریافتی) معمولاً به شکل زیر بیان می گردد:

(1- 4)

با جایگذاری معادله (1-4) در معادله (1-3) عبارت زیر حاصل می گردد:

(1- 5)

به ازای کلیه مقادیر , , که در معادله بالا صادق باشد، جواب معادله موج را می توان به شکل قطبی زیر نمایش داد.

(1- 6)

که در آن را بردار عدد موج و تابع نمایی را تابع صفحه موج تک رنگ[4] می نامند. میدان اسکالر را می توان به صورت ترکیب تمامی صفحه های موج برای تمامی فرکانس ها به صورت آن چه در ادامه آمده است، بیان نمود[1]:

(1- 7)

که در آن

(1- 8)

و با توجه به این که

(1- 9)

طبق رابطه (1- 5) نتیجه می شود:

(1- 10)

و مقدار فاز در رابطه (1- 6) به صورت زیر خواهد بود:

(1- 11)

معمولاً جهت و سرعت انتشار، با بردار (بردار آهستگی[5]) معرفی می گردد. با توجه به روابط بالا واضح است که اندازه بردار برابر با عکس سرعت انتشار می باشد. با استفاده از مختصات کروی مطابق شکل (1-1)
می توان را به صورت زیر نمایش داد:

(1- 12)

با جایگذاری رابطه بالا در معادله مکان – زمان، تابع انتشار سیگنال به صورت زیر به دست می آید:

(1- 13)

کهS( ) تبدیل فوریه تابع می باشد.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 691
|
امتیاز مطلب : 4
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :حذف تداخل در کانال مرجع رادار پسیو مبتنی بر سیگنال پخش تلویزیون دیجیتال توسط فرستنده¬های زمینی با رویکرد بازتولید

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان­نامه کارشناسی ارشد در رشته مهندسی برق-مخابرات سیستم

 

حذف تداخل در کانال مرجع رادار پسیو مبتنی بر سیگنال پخش تلویزیون دیجیتال توسط فرستنده­های زمینی با رویکرد بازتولید

 

 

اساتید راهنما:

دکترمصطفی درختیان          

دکتر عباس شیخی

 

 

 

بهمن ماه 1392

تکه هایی از متن به عنوان نمونه :

چکیده

 

حذف تداخل در کانال مرجع رادار پسیو مبتنی بر سیگنال پخش تلویزیون دیجیتال توسط فرستنده­های زمینی با رویکرد بازتولید

 

به کوشش

زهره اسدسنگابی

 

در این پایان­نامه یک گیرنده­ی دیجیتال جهت پردازش سیگنال در گیرنده­ی مرجع رادار پسیو مبتنی بر مدولاسیون تقسیم فرکانسی متعامد(OFDM) پخش زمینی تلویزیون دیجیتال(DVB-T) ارائه شده است. این گیرنده شامل بلوک­های هم­زمان­سازی، تخمین آفست فرکانسی و تخمین­گر کانال می­باشد. پس از همزمان­سازی، به تخمین و جبران آفست فرکانسی که هر دو با استفاده از تشخیص موقعیت زیرسمبل­های پایلوت انجام می­شود، می­پردازیم. سپس با استفاده از دو روش درون­یابی خطی و کمترین مربع خطا ( LS) تخمین کانال انجام می­شود. پس از اینکه کانال تخمین زده شد، به همسانسازی کانال خواهیم پرداخت و نهایتا نسخه­ی بازتولید سیگنال ارسالی ساخته می­شود. جهت بررسی کارایی گیرنده موردنظر منحنی احتمال خطای آشکارسازی سمبل­ها را بر حسب نسبت توان سیگنال­ به توان نویز برای روش­های مختلف تخمین کانال ترسیم نموده­ایم. همچنین برای بررسی دقیق­تر کارایی الگوریتم­های پیشنهادی منحنی اتلاف تضعیف کلاتر در گیرنده­ی مراقبت رادار پسیو مبتنی بر سیگنال DVB-T ترسیم کرده­ایم تا مشخص نماییم که اگر با استفاده از سیگنال بازتولید شده در گیرنده­ی پیشنهادی، کلاتر را در گیرنده­ی مراقبت تضعیف نماییم این مقدار تضعیف نسبت به وضعیتی که سعی کنیم در گیرنده­ی مراقبت با استفاده از نسخه­ی ایده­آل از سیگنال ارسالی، کلاتر را حذف نماییم، دچار اتلاف خواهد شد.

کلید واژگان: همزمان سازی، همسان سازی، بازتولید

 

 

فهرست مطالب

 

 

عنوان                                                                                                                   صفحه

 

فصل اول: مقدمه ………………………………………………………………………………………………………………………….   1

 

1-1- مقدمه­ای بر رادار پسیو ………………………………………………………………………………………………………   2

1-2- مروری بر سیستم DVB_T ………………………………………………………………………………………………. 5

1-3- ساختار پایان­نامه ……………………………………………………………………………………………………………………. 7

فصل دوم: ساختار فریم OFDM …………………………………………………………………………………………………….. 9

 

2-1- مقدمه­ای بر OFDM ………………………………………………………………………………………………………….. 10

2-2- ساختار فرستنده و گیرنده­ی OFDM ……………………………………………………………………………….. 15

2-2-1- پریود سمبل، فواصل و فضای حامل ……………………………………………………………………… 16

2-2-2- پیاده سازی با استفاده از FFT و IFFT ………………………………………………………………… 18

2-3- مزایا و معایب سیستم­های OFDM …………………………………………………………………………………… 20

2-4- ساختار فریم OFDM در گیرنده­ی DVB-T …………………………………………………………………….. 21

2-4-1- نقاط منظومه­ای…………………………………………………………………………………………………………………30

فصل سوم: آشنایی با پخش زمینی تلویزیون دیجیتال ………………………………………………………………. 32

3-1- معایب انتقال آنالوگ ………………………………………………………………………………………………………….. 33

3-2- مزایای سیستم دیجیتال ……………………………………………………………………………………………………. 35

3-2-1- کیفیت تصاویر ارسالی دیجیتال و آنالوگ ……………………………………………………………. 37

3-3- اجزای یک سیستم تلویزیون …………………………………………………………………………………………….. 38

3-3-1- طراحی تلویزیون ………………………………………………………………………………………………….. 40

3-3-2- تلویزیون همراه (DVB_T MOBILE) ……………………………………………………………….. 41

3-4- گسترش جهانی تلویزیون دیجیتال …………………………………………………………………………………… 42

3-4-1- تلویزیون دیجیتال در ایالات متحده ……………………………………………………………………. 42

3-4-2- تلویزیون دیجیتال در اروپا …………………………………………………………………………………… 43

3-4-3- تلویزیون دیجیتال در ژاپن …………………………………………………………………………………… 43

3-4-4- نحوه­ی پوشش DVB_T در ایران ……………………………………………………………………….. 44

3-5- سازمان­ها و استانداردهای عمومی تلویزیون دیجیتال ………………………………………………………. 46

3-6- فرستنده­های تلویزیون دیجیتال ……………………………………………………………………………………….. 49

3-6-1- لزوم فشرده سازی به روش MPEG-2 ………………………………………………………………….. 51

3-6-2- کدهای درونی(کد کانولوشنال) ……………………………………………………………………………. 54

3-6-3- مدولاسیون درونی(داخلی) …………………………………………………………………………………… 55

3-6-4- کدگذاری خارجی …………………………………………………………………………………………………. 56

3-6-5- مدولاسیون درونی(داخلی) ………………………………………………………………………………….. 57

3-7- باند ارسال ………………………………………………………………………………………………………………………….. 58

3-8- منطقه­ی پوشش فرستنده …………………………………………………………………………………………………. 58

3-9- دریافت سیگنال دیجیتال ………………………………………………………………………………………………….. 59

3-10- اصطلاحات دیجیتالی ………………………………………………………………………………………………………. 61

فصل چهارم: شبیه­سازی گیرنده­ی سیگنال DVB_T ………………………………………………………………… 63

4-1- گیرنده­ی سیگنال DVB_T ………………………………………………………………………………………………. 64

4-1-1- مشخصات سیستم DVB_T …………………………………………………………………………………. 65

4-1-2- گیرنده­ی پیشنهادی ……………………………………………………………………………………………… 66

4-2- همزمان­سازی …………………………………………………………………………………………………………………….. 67

4-3- تخمین آفست فرکانسی   …………………………………………………………………………………………………… 70

4-4- تخمین کانال ………………………………………………………………………………………………………………………. 76

4-4-1- روش درون یابی خطی …………………………………………………………………………………………. 76

4-4-2- روش کمترین مربعات (LS) ………………………………………………………………………………….. 78

4-4-3- تخمین کانال متغیر با زمان …………………………………………………………………………………. 81

4-5- همسان­سازی ……………………………………………………………………………………………………………………. 82

4-6- دی­مدولاسیون …………………………………………………………………………………………………………………. 83

4-7- روش بازتولید ……………………………………………………………………………………………………………………. 83

4-8- حساسیت سنجی روش بازتولید ………………………………………………………………………………………. 84

فصل پنجم: نتایج …………………………………………………………………………………………………………………………. 96

 

– فهرست منابع ……………………………………………………………………………………………………………………………100

– چکیده به زبان انگلیسی ……………………………………………………………………………………………………………103

 

فصل اول

 

 

1- مقدمه

 

 

 

 

 

 

 

 

 

 

 

 

 

1-1- مقدمه­ای بر رادار پسیو

 

فضای اطراف ما آکنده از امواج رادیویی است که در تمام جهات در حال انتشار می­باشد. امواج رادیویی، امواج مغناطیسی می­باشند که معمولا توسط آنتن منتشر می­شوند. واژه­ی رادار (Radar)[1] از حروف اول چند کلمه­ی انگلیسی به معنای آشکارسازی و فاصله­یابی با استفاده از امواج رادیویی، ساخته شده است. این واژه که امروزه در سرتاسر دنیا کاربرد دارد، همانند رادیو و تلویزیون یک اصطلاح بین­المللی شده است. با رادار می­توان درون محیطی را که برای چشم، غیر قابل نفوذ است دید مانند تاریکی، باران، مه، برف، غبار و … . امواج رادیویی برد زیادی دارند، توسط انسان­ها قابل حس نیستند و کشف و دریافت آن­ها حتی هنگامی که ضعیف هم شده­اند به­ راحتی امکان­پذیر است. بنابراین رادار دستگاهی است که به وسیله­ی امواج رادیویی می­تواند وجود شیئی را کشف و فاصله­ی آن را تعیین نماید. سیستم­های راداری متداول از یک بخش فرستنده و گیرنده تشکیل می­شوند که اغلب از یک آنتن برای ارسال و دریافت استفاده می­کنند. اولین تجربه در مورد بازتابش امواج رادیویی توسط هرتز آلمانی در سال 1886 به­دست آمد. در سال­های 1920 تا 1930 پیشرفت­هایی در جهت ساخت رادار با قابلیت­های تعیین فاصله­ی اهداف صورت گرفت. در سال 1960 استفاده از رادارهای هوایی و فضایی توسعه یافت و علاوه بر کاربرد نظامی، جهت نقشه­برداری جغرافیایی و اکتشافات علمی و … مورد استفاده قرار گرفتند. رادارها براساس محل قرار گرفتن فرستنده و گیرنده به رادارهای تک­پایه[2]، دو­پایه[3] و یا چند­پایه تقسیم می­شوند. رادارهای اولیه همگی دو­پایه بودند. با پیشرفت تکنولوژی آنتن­هایی ساخته شدند، که قادر بودند از فرستندگی به گیرندگی سوییچ نمایند. در سال 1936 رادارهای دوپایه جای خود را به رادارهای تک­پایه دادند. اجزاء تشکیل دهنده سیستم رادار فرستنده، گیرنده آنتن وسیستم­های الکتریکی جهت ثبت و پردازش اطلاعات می­باشد.

از انواع رادارها، رادارهای پسیو می­باشند. رادار پسیو را با نام­هایPCL[4] و PBR[5] می­شناسند]1[. رادار پسیو راداری دو ­پایه است که می­تواند با استفاده از انواع فرستنده­های مغتنم بدون اینکه خود مورد شناسایی قرارگیرد، به آشکارسازی اهداف بپردازد و اختلاف زمان بین سیگنالی که مستقیما از فرستنده دریافت می­شود و سیگنال­هایی را که در اثر تشعشع دریافت می­شود را اندازه می­گیرد این کار اجازه می­دهد تا وضعیت هدف و تحرک آن مشخص گردد. فرستنده­های متعدد آنالوگ و دیجیتال VHF رادیویی و UHF تلویزیونی موجود هستند که رادار پسیو می­تواند از آنها به عنوان فرستنده­های مغتنم استفاده کند.

از مزایای رادارهای PBR می­توان به موارد زیر اشاره کرد:

پایین بودن هزینه­ی نگه­داری به دلیل نداشتن فرستنده، پایین بودن هزینه­ی ساخت، پنهان­کاری راداری به علت نداشتن امواج ارسالی، اندازه­ی کوچک­تر نسبت به رادارهای اکتیو، امکان ردیابی و مقابله با جنگنده­های پنهان­کار، غیرقابل ردیابی در مقابل موشک­های ضد تشعشع.

رادارهای پسیو که از فرستنده­های مغتنم بهره­برداری می­کنند، دارای ساختار دوپایه مطابق شکل 1-1 می­باشند. در این صورت به سیگنالی که بین فرستنده­ی مغتنم و گیرنده­ی رادار دوپایه مبادله می­شود، سیگنال مسیرمستقیم می­گویند و به سیگنالی که بین هدف و گیرنده­ی رادار دوپایه مبادله می­شود، سیگنال هدف گفته­ می­شود]2-3 [.

شکل 1-1: هندسه­ی رادار پسیو

 

ایده­ی بنیادین رادار پسیو این است که سیگنال­های چند مسیره شامل سیگنال مرجع، سیگنال­های کلاتر و اهداف در کانال مراقبت را گرفته و به تفکیک آن­ها می­پردازد. برای تفکیک مناسب این سیگنال­ها نیازمند آن هستیم که یک نسخه­ی خالص از سیگنال کانال مرجع را در اختیار داشته باشیم، معمولا این نسخه­ی­ خالص دراختیار نیست و با انجام پیش­پردازش­هایی روی سیگنال دریافتی، این سیگنال خالص به دست می­آید. یکی از روش­­های دست­یابی به نسخه­ی اصلی سیگنال کانال مرجع، بازتولید[6] می­باشد.

در رادارهای معمولی، زمان ارسال پالس و دریافت آن کاملا شناخته شده است و به رادار این اجازه را می­دهد تا فاصله هدف به راحتی محاسبه شود و توسط یک فیلتر تطابق درصد سیگنال به نویز را مشخص نماید. یک رادار پسیو هیچ اطلاعاتی را به طور مستقیم دریافت نمی­نماید، از این رو باید از یک کانال اختصاصی (که کانال منبع نامیده می شود) استفاده نماید.

یک رادار پسیو برای آشکارسازی اهداف از مراحل زیر استفاده می­نماید:

  • جستجوی منطقه تحت پوشش برای دریافت امواج توسط دریافت­کننده­های دیجیتالی بدون نویز
  • تولید امواج دیجیتال برای تشخیص جهت دریافت امواج و فاصله ارسال شده و قدرت منبع ارسال کننده
  • فیلترینگ انطباقی برای جداسازی هر سیگنال مستقیم ناخواسته در محدوده تجسس
  • آماده­سازی سیگنال مشخص شده برای ارسال کننده
  • رابطه ضربدری برای کانال منبع با کانال­های تجسسبرای مشخص­کردن رنج بای­استاتیک و داپلر هدف
  • آشکار سازی با استفاده از میزان هشدار کاذب[7] ( (CFAR
  • ارتباط و پیگیری هدف در فضای داپلر تحت پوشش که به نام پیگیری خطی[8] شناخته شده است.
  • ارتباط و ترکیب پیگیری خطی از هر ارسال کننده به شکل ارزیابی نهایی از موقعیت و سمت و سرعت یک هدف به نمایش در می­آید]3[.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 484
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :ردیابی اشیاء متحرک چندگانه در تصاویر دوربین متحرک

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

 

پایان­نامه کارشناسی ارشد در رشته مهندسی برق (مخابرات-سیستم)

 

ردیابی اشیاء متحرک چندگانه در تصاویر دوربین متحرک

 

 

اساتید راهنما

دکتر مهران یزدی

دکتر محمدعلی مسندی شیرازی

 

شهریور ماه 92

تکه هایی از متن به عنوان نمونه :

چکیده

 

 

ردیابی اشیاء متحرک چندگانه در تصاویر دوربین متحرک

 

به کوشش

 

محسن خیراندیش فرد

 

 

موضوع ردیابی اهداف یکی از مهمترین مسائل موجود در علم بینایی ماشین می باشد. مساله ردیابی اهداف چندگانه در تصاویر به دست آمده از دوربین متحرک در این پایان نامه مورد ارزیابی قرار گرفته است. برای حل کردن این مساله دو روش کلی در این پایان نامه ارائه شده است. روش اول عمدتا بر پایه الگوریتم های تطبیق بلوکی می باشد. در این روش با استفاده از جبران سازی حرکتی و دسته بندی حرکت های مختلف موجود در تصویر، نواحی مربوط به اهدف و پس زمینه مشخص خواهند شد. سپس عملیات ردیابی با استفاده از فیلتر کالمن صورت گرفته است. با توجه به نتایج به دست آمده، این روش توانایی ردیابی اهداف با دقت بسیار زیاد را در بیش تر شرایط دارا می باشد. دومین روش پیشنهادی اساسا بر گرفته از الگوریتم تطبیق نقطه ای شناخته شده ای به نام SIFT می باشد. در این روش با ایجاد تطبیق میان نقاط کلیدی ناحیه هدف و نقاط متناظر در فریم بعدی، سعی در یافتن ناحیه هدف در فریم های متوالی می شود. مساله ردیابی نواحی هدف در دنباله فریم به وسیله فیلتر کالمن صورت می پذیرد. با توجه به این که هدف در این روش به صورت محلی بررسی می شود، این روش در موقعیت های مختلف ردیابی از قبیل محو شدگی دارای توانایی زیادی می باشد. با توجه به نمودارها و جدول های می توان نتیجه گرفت که این روش از نظر دقت در بسیاری از موارد ردیابی عملکرد به مراتب قوی تری نسبت به اکثر روش های موجود دارد.

 

فهرست مطالب

 

صفحه عنوان
فصل 1     مقدمه—————————————————————— 1

1-1-         مقدمه ——————————————————————- 2

1-1-1-             ساختار سیستم های ردیابی ————————————————— 3

1-1-1-1-          دوربین ———————————————————————–   3

1-1-1-2-          هدف ————————————————————————- 5

1-1-2-             نحوه عملکرد سیستم های ردیابی ——————————————– 6

1-1-2-1-     الگوریتم های فاقد خاصیت پیش بینی———————————————–   6

1-1-2-2-     الگوریتم های دارای خاصیت پیش بینی———————————————– 7

1-2-         تعریف مساله و مشکلات پیش رو ———————————————— 8

1-3-         نحوه حل مساله ———————————————————— 10

1-4-         سر فصل ها ————————————————————— 11

 
فصل 2     مروری بر تحقیقات صورت گرفته ——————————————- 14

2-1-         مقدمه ——————————————————————- 15

2-2-         روش های مختص دوربین ثابت ———————————————– 15

2-2-1-               روش تفریق پس زمینه —————————————————– 15

2-3-         روش های قابل استفاده در دوربین متحرک ————————————- 17

2-3-1-   روش Mean Shift ———————————————————— 17

2-3-2-   روش CAM Shift ———————————————————— 20

2-3-3-   روش جریان بصری ————————————————————- 21

   
صفحه عنوان
فصل 3     الگوریتم های ارائه شده به منظور آشکار سازی ——————————– 24

3-1-         مقدمه ——————————————————————- 25

3-2-         الگوریتم پیشنهادی اول —————————————————– 26

3-2-1-               جبران سازی حرکتی به وسیله الگوریتم های تطبیق بلوکی ————————- 26

3-2-1-1-          مفهوم الگوریتم تطبیق بلوکی —————————————————– 27

3-2-1-2-          الگوریتم های جستجوی بلوک متناظر ———————————————- 29

3-2-1-3-          به دست آوردن ناحیه متحرک تصویر ———————————————– 33

3-2-2-               قطعه بندی تصویر به وسیله الگوریتم K-Means ——————————— 34

3-2-3-               نمودار جریان الگوریتم پیشنهادی اول —————————————— 37

3-3-         الگوریتم پیشنهادی دوم —————————————————– 39

3-3-1-               ساختن فضای مقیاس —————————————————— 41

3-3-2-               استفاده از تقریب LoG ————————————————- 44

3-3-3-               یافتن نقاط کلیدی در تصویر ————————————————- 46

3-3-4-               حذف نقاط کلیدی غیر موثر ————————————————- 47

3-3-4-1-          آشکارساز گوشه Harris ———————————————— 47

3-3-4-2-          حذف نقاط با تفکیک پذیری کم با استفاده از بسط تیلور —————————– 51

3-3-5-               جهت دهی به نقاط کلیدی انتخاب شده —————————————- 53

3-3-6-               ایجاد خصیصه های SIFT ————————————————— 54

 
فصل 4     ردیابی توسط فیلتر کالمن ———————————————— 56

4-1-         مقدمه ——————————————————————- 57

4-2-         فیلتر کالمن ————————————————————– 57

4-3-         نوع حرکت اهداف ———————————————————- 61

4-4-         استفاده عملی از فیلتر کالمن ————————————————- 62

   
صفحه عنوان
فصل 5       شبیه سازی و مقایسه —————————————————– 66

5-1-         مقدمه ——————————————————————- 67

5-2-         دنباله فریم های مورد استفاده ———————————————— 68

5-2-1-   دنباله فریم اول ————————————————————— 69

5-2-2-   دنباله فریم دوم ————————————————————— 71

5-2-3-   دنباله فریم سوم ————————————————————— 73

5-2-4-   دنباله فریم چهارم ————————————————————- 75

5-2-5-   دنباله فریم پنجم ————————————————————– 78

 
فصل 6     نتایج و پیشنهادات —————————————————— 82

6-1-         مقدمه ——————————————————————- 83

6-2-         نتیجه گیری ————————————————————– 83

6-3-         پیشنهادات ————————————————————— 84

فهرست منابع ——————————————————————– 86
   

 

 

 

 

 

 

 

فصل اول

 

 

 

مقدمه

 

 

 

 

 

 

 

 

 

 

 

 

1-1-      مقدمه

امروزه پیشرفت های علمی زندگی بشر را تحت تاثیرعمیقی قرار داده است. هم زمان با ورود تکنولوژی به زندگی شخصی افراد جامعه ، وجود وسایل و ابزارآلاتی که نقش رابط میان انسان و ماشین را بازی کنند، روز به روز بیش تر احساس می شود. یک نمونه از این وسایل دوربین[1] های فیلم برداری هستند. کاربرد وسیع این ادوات در جوامع امروزی ، به خصوص در کشورهای صنعتی تر غیرقابل انکار است. لذا امروزه بهبود کیفیت و امکانات دوربین ها به عنوان عامل مهمی در جهت افزایش کارایی آن ها در نظر گرفته می شود. یکی از مهم ترین شاخه های علمی که به بررسی این موارد می پردازد، علم بینایی ماشین[2] نام دارد.

یکی از اصلی ترین اهداف بینایی ماشین ، هوشمند سازی دوربین ها به منظور استفاده از آن ها در سیستم های نظارتی[3]، تجاری، نظامی و سایر کاربرد ها می باشد. به همین منظور مطالعات گسترده ای در راستای ایجاد روش های جدید هوشمند سازی و همچنین بهبود روش های موجود شده است. غالب این مطالعات بر روی آشکارسازی[4] و ردیابی[5] اهداف[6] متمرکز شده است. هدف کلی از انجام مطالعات این چنینی، کاهش حجم محاسبات و افزایش دقت در مراحل آشکارسازی و ردیابی می باشد. به طور کلی آشکارسازی هدف به معنی تشخیص ناحیه ای از تصویر است که بتواند به عنوان کاندیدایی[7] برای ناحیه هدف در نظر گرفته شود. به عنوان مثال : مشخص کردن مناطقی از تصویر که مربوط به پلاک خودرو می باشد و یا همچنین آشکارسازی نواحی از تصویر که می تواند به عنوان ناحیه ای مربوط به چهره انسان تلقی شود. همچنین منظور از ردیابی هدف آن است که ناحیه مورد نظر را در مجموعه فریم های متوالی نیز مشخص کنیم. به این ترتیب مسیر سیر کلی هدف در یک دنباله زمانی در طول فریم های متوالی تعیین خواهد شد.

در ادامه ضمن بحث، به معرفی اجمالی در مورد سیستم های ردیابی مختلف و اجزا تشکیل دهنده آن ها و همچنین نحوه عملکردشان خواهیم پرداخت.

 

1-1-1-             ساختار سیستم های ردیابی

سیستم های ردیابی مختلف بر اساس موارد کاربرد آن ها به دسته های مختلفی تقسیم می شوند. دوربین ها و اهداف از اجزا اصلی تشکیل دهنده این گونه سیستم ها می باشند. بنابراین همان گونه که این اجزا نقش تعیین کننده در نوع سیستم های ردیابی دارند، در تعیین نوع روش های مورد استفاده در این سیستم ها نیز از اهمیت بسیار بالایی برخوردار می باشند. سیستم ها بر اساس تعداد، نوع و همچنین دیگر شرایط دوربین ها و اهداف، دارای تفاوت های چشم گیری می باشند. به همین ترتیب این تفاوت ها در روش های ردیابی مورد استفاده در آن ها نیز به چشم می خورد. در ادامه به عواملی که در ایجاد این تغیرات موثر هستند خواهیم پرداخت.

 

1-1-1-1-                 دوربین

دوربین به عنوان اصلی ترین جز سیستم ردیابی وظیفه به وجود آوردن دنباله ای از فریم ها در طول زمان را دارد. نوع دوربین های به کار رفته شده ، تعداد و همچنین نحوه قرار گرفتن آن ها نقش بسیار زیادی در تعیین ظاهر فریم ها بر عهده خواهد داشت. این تاثیر گاهی به حدی می باشد که باعث ایجاد روش هایی با پایه و اساس متفاوت می گردد.

به عنوان نمونه روش های ردیابی در سیستم های با دوربین مرئی[8] کاملا متفاوت با روش های مورد استفاده در سیستم های با دوربین مادون قرمز[9] می باشد. این مساله از این حقیقت ناشی می شود که در دوربین های مادون قرمز به نوعی اطلاعات قبلی[10] از اهداف در اختیار است. به این معنی که در تصاویر به دست آمده از این دوربین ها، اهداف دارای شدت رنگ[11] قوی تری نسبت به محیط اطراف خود می باشند. در نتیجه از قابلیت تشخیص بیشتری برخوردار می باشند. هر چند که برخی الگوریتم های ارائه شده، قابل اعمال در تصاویر به دست آمده از هر دو نوع دوربین مرئی و مادون قرمز می باشند، کارایی این الگوریتم ها دراین تصاویر به طور چشم گیری متفاوت است.

به علاوه تعداد دوربین های مورد استفاده نیز یکی از عوامل بسیار مهم در تعیین روش مورد استفاده در ردیابی می باشد. وجود اختلاف در زاویه دید دوربین ها باعث ایجاد تصاویر مختلفی از زوایای مختلف از یک صحنه خاص می شود. در این شرایط یافتن نقاط متناظر در فریم های به دست آمده از تمام دوربین ها و همچنین کالیبره کردن [12]دوربین ها، امری ضروری می باشد. مشاهده می شود که این روش ها به طور کلی با روش های ردیابی بر اساس یک دوربین متفاوت است.

علاوه بر موارد ذکر شده در بالا، حرکت دوربین[13] نیز در برخی موارد باید در نظر گرفته شود. به این معنی که گاهی علاوه بر اهداف ، دوربین نیز دارای حرکت می باشد. در این موارد اجزا موجود در فریم های متوالی، نسبت به هم دارای حرکت می باشند. این در حالی است که پاره ای از این حرکات به واسطه متحرک بودن دوربین صورت گرفته و همچنین برخی نیز به واسطه وجود حرکت در اجسام می باشند. بنابراین هدف نهایی آن است که میان حرکاتی که به واسطه دوربین می باشد و حرکاتی که حقیقی هستند ایجاد تمایز کنیم. لزوم انجام این عمل از موارد اصلی می باشد که در ردیابی اهداف در سیستم های با دوربین ثابت در نظر گرفته نمی شود.

 

1-1-1-2-                 هدف

وجود اهداف، تکمیل کننده فرآیند ردیابی می باشد. نوع اهداف، تعداد آن ها و همچنین تغییر شکل ظاهری آن ها در دنباله فریم ها عوامل تعیین کننده ای در انتخاب روش ردیابی متناسب با سیستم می باشد. با توجه به این تفاوت های موجود در ساختار اهداف، روش های متفاوتی نیز ایجاد شده اند.

در برخی موارد ردیابی، هدف دارای خصوصیات خاص ظاهری می باشد. به عنوان نمونه گاهی ردیابی چهره انسان مد نظر است. چهره انسان دارای غالب[14] مشخصی متشکل از چشم ها، بینی و لب در صورتی با ظاهر بیضی گون می باشد. در آشکارسازی این موارد، الگوریتم تنها به دنبال نواحی از تصویر است که دارای قابلیت انطباق با غالب مورد نظر برای چهره انسان است. به این ترتیب همان گونه که دیده می شود، روش ارائه شده مخصوص ردیابی در همین حالت می باشد و با سایر روش های ردیابی به صورت کلی متفاوت است.

تعداد اهداف موجود در تصویر نیز یکی از عوامل مهم و تعیین کننده در الگوریتم های کاربردی ردیابی می باشد. با افزایش تعداد اهداف، مشکلات جدید و عمده ای در زمینه های آشکارسازی و ردیابی به وجود می آید. از مهمترین این مشکلات محو شدگی[15] اهداف و همچنین قرار گرفتن اهداف در موقعیت مشابه[16] می باشد. الگوریتم های ارائه شده با تمرکز بر این مشکلات، راه هایی برای حل آن ها ارائه کرده اند.

تغییر شکل[17] ظاهری هدف از عمده ترین مشکلات مرتبط با شرایط ظاهری آن است. به این معنی که گاهی اهداف دارای ساختار صلب[18] نیستند. بنابراین در فریم های متوالی ظاهر متفاوتی دارند. برای مثال ظاهر یک عابر پیاده در فریم های متوالی، دچار تغییرات ظاهری مختلفی می شود. این تغییرات در ظاهر اجسام صلبی مانند اتومبیل دیده نمی شود. بنابراین روش های پیشنهادی باید به گونه ای باشند که توانایی وفق یافتن با این تغییرات شرایط ظاهری اهداف را نیز داشته باشند.

1-1-2-             نحوه عملکرد سیستم های ردیابی

اگر چه در مطالب قبل اشاره شد که تغییرات در ساختار سیستم های ردیابی می تواند به تغییرات عمده در روش های ردیابی مورد استفاده منجر شود، این روش ها از بسیاری جهات و اصول اولیه دارای اشتراکات فراوانی هستند. عمده تفاوت این روش ها در نحوه اجرای مراحل کلی می باشد. در این پایان نامه به طور کلی الگوریتم های مورد استفاده در سیستم های ردیابی اهداف را بر اساس استفاده از قابلیت پیش بینی[19] به دو دسته اصلی تقسیم می کنیم. در ادامه به معرفی هر کدام از این دو دسته خواهیم پرداخت و مزایا و معایب آن ها را بیان می کنیم.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 749
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

رویس در شبکه‌های مش بی‌سیم

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

زمان‌بندی تخصیص لینک با رویکرد تامین خدمات سرویس در شبکه‌های مش بی‌سیم

 

 

 

 

 

 

 

پایان نامه کارشناسی ارشد مهندسی برق- مخابرات

 

 

 

استاد راهنما

دکتر حسین سعیدی

استاد مشاور

دکتر نغمه سادات مؤیدیان

 

 

 

 

اردیبهشت 1392

 

 

تکه هایی از متن به عنوان نمونه :

 

فهرست

 

عنوان                                                                                                                                                                 صفحه

فهرست مطالب.. یک

فهرست اشکال پنج

فهرست جداول هفت

چکیده 1

1-                  فصل اول مقدمه…………………………………………………………                                      2

1-1مقدمه، چشم انداز شبکه‌های مش بی‌سیم…………………………………………………..  2

1-2ضرورت تضمین کیفیت سرویس، چالش اصلی در شبکه‌های مش بی‌سیم        4

1-3تعریف مسئله……………………………………….……………………             6

1-4بررسی پیشینه کار………………………………………………………………………………………………………………………………… 7

1-5 فصول بعدی این نوشتار………………………………………………………………………………….          9

1-6جمع‌بندی………………………………………………………… …………………………………………………………………………                     9

2-فصل دوم شبکه‌های مش بی‌سیم…………………………………………………………………………  11

2-1چشم‌انداز………………………………………………………. …………………………………………………………………………                     11

2-2توپولوژی شبکه……………………………………………….. …………………………………………………………………………                     14

2-2-1توپولوژی نقطه به نقطه (PTP) …………………………………………….. ………………………………………………… 14

2-2-2توپولوژی نقطه به چند نقطه (PMP) …………………………………………………………………………                                                                          14

2-2-3توپولوژی مش…………………………………………… …………………………………………………………………………                                                                          15

2-3شبکه‌های بی‌سیم چندگامی…………………………………………………………………………   16

2-4معماری شبکه‌های مش بی‌سیم…………………………………………………………………………        17

2-4-1شبکه‌های مش بی‌سیم به عنوان شبکه‌ی زیر ساخت…………………………………………………………………..                                                                                  17

2-4-2شبکه‌های مش بی‌سیم کاربران………………………… …………………………………………………………………………                                                                          18

2-4-3شبکه‌های مش بی‌سیم ترکیبی……………………….. …………………………………………………………………………                                                                          19

2-5مقایسه شبکه‌های مش بی‌سیم و Ad-hoc                                                              …………………………………………………………………………………..19

یک

2-6مسائل مربوط به لایه‌های شبکه و زمینه‌های باز تحقیقاتی…………………………………………………………………                       21

2-6-1لایه فیزیکی…………………………………………………… ………………………………………………………………….                                                                                               21

2-6-2لایه‌ی دسترسی در شبکه‌های مش بی‌سیم…………………………………………………………………                                                                                     23

2-6-3MAC تک کاناله………………………………………. …………………………………………………………………………                                                                          24

2-6-4MAC چندکاناله………………………………………. …………………………………………………………………………                                                                          25

2-6-5لایه شبکه……………………………………………………. …………………………………………………………………………                                                                          28

2-6-6لایه انتقال………………………………………………….. …………………………………………………………………………                                                                          30

2-6-7لایه کاربرد…………………………………………… …………………………………………………………………………                                                                          31

2-7مدیریت شبکه………………………………………………. …………………………………………………………………………                     32

2-8طراحی بین لایه ای………………………………………. …………………………………………………………………………                     33

2-9 کاربردهای WMN………………………………………. …………………………………………………………………………                     33

2-9-1شبکه‌ی خانگی باند وسیع…………………………………………………………………………          33

2-9-2شبکه کردن اجتماعات و همسایگی ها…………………………………………………………………………                34

2-9-3شبکه کردن شرکت های تجاری…………………………………………………………………………        35

2-9-4شبکه های شهری…………………………………… …………………………………………………………………………                     36

2-9-5سایر شبکه‌ها………………….. ……………………………………………………………………………………………………………………. 37

2-9-6 چند مثال موردی از شبکه‌های WMN…………………………………………………………………………          38

2-10جمع‌بندی……………………………………………………… …………………………………………………………………………                     39

3-فصل سوم زمان‌بندی متمرکز در شبکه‌های مش بی‌سیم………………………………………………………………………..    41

3-1مقدمه…………………………………………………………… …………………………………………………………………………                     41

3-2لایه فیزیکی استاندارد IEEE 802.16…………………………………………………………………………        42

3-2-1مدولاسیون دیجیتال…………………………………….. …………………………………………………………………………                                                                          46

3-3لایه MAC استاندارد IEEE 802.16…………………………………………………………………………        48

3-3-1 تطبیق لینک…………………………………………….. …………………………………………………………………………                                                                          49

3-4عملکرد مد مش در MAC استاندارد IEEE 802.16……………………………………………………………………..                  50

دو

3-4-1 ساختار فریم در مد مش استاندارد IEEE 802.16…………………………………………………………………….                                                                          51

3-4-2زیرفریم کنترلی………………………………………………. …………………………………………………………………..                                                                                            52

3-4-3زیرفریم دیتا………………………………………………. …………………………………………………………………………                                                                          54

3-4-4نحوه ورود یک گره‌‌‌ به شبکه………………………… …………………………………………………………………………                                                                          56

3-5الگوی زمانبندی مبتنی بر استاندارد IEEE 802.16…………………………………………………………………………        57

3-5-1زمان‌بندی متمرکز…………………………….. ……. …………………………………………………………………………                                                                          59

3-6جمع بندی…………………………………………………………………………………………………………………………………..                  60

4-فصل چهارم مدل، چالش‌ها و روش‌های زمان‌بندی متمرکز در شبکه‌های مش بی‌سیم………………………..                            61

4-1مقدمه…………………………………………………………. …………………………………………………………………………                     61

4-2نیازمند‌های طراحی الگوریتم های زمانبندی…………………………………………………………………………                               62

4-2-1تداخل میان لینکهای بی‌سیم……………………………. …………………………………………………………………………                                                                          62

4-2-2سربار………………………………………………………… …………………………………………………………………………                                                                          64

4-2-3تأخیر………………………………………………………. …………………………………………………………………………                                                                          65

4-2-4استفاده مجدد فرکانسی……………………………… …………………………………………………………………………                                                                          66

4-3دسته‌بندی الگوریتم‌های زمان‌بندی…………………………………………………………………………                               68

4-4معرفی الگوریتم‌های زمان‌بندی با رویکرهای‌مختلف…………………………………………………………………………                  70

4-5نتیجه‌گیری……………………………………………………. …………………………………………………………………………                     76

5-                 فصل پنجم الگوریتم پیشنهادی بر پایه‌ی الگوریتم ژنتیک……………………………………………………………                                      78

5-1مقدمه…………………………………………………………….. …………………………………………………………………………                     78

5-2الگوریتم ژنتیک…………………………………………… …………………………………………………………………………                     79

5-2-1تاریخچه…………………………………………………….. …………………………………………………………………………                                                                          79

5-2-2ساختار الگوریتم‏های ژنتیکی……………………………………………………………………………………………………… 80

5-2-3عملگرهای الگوریتم ژنتیک…………………….. …………………………………………………………………………                                                                          82

5-2-4کدگذاری و همگرایی الگوریتم ژنتیک…………………………………………………………………………                                                             86

5-3الگوریتم پیشنهادی……………………………………… …………………………………………………………………………                     87

سه

5-4شبیه سازی…………………………………………………… …………………………………………………………………………                     96

5-4-1محیط شبیه سازی…………………………. …………………………………………………………………………                                                                          96

5-4-2نتایج حاصل از شبیه‌سازی…………………………….. …………………………………………………………………………                                                                          98

5-5جمع بندی…………………………………………………. ……………………………………………………………………….. 111 Error! Bookmark not defined.

فصل ششم نتیجه‌گیری و پیشنهادات……………………………………………………………………………………………..112

             مراجع………………………………………………………………………………………………………………………………………………….114

 چکیده

شبکه‌های مش بی‌سیم یکی از تکنولوژی‌های مورد توجه برای ایجاد شبکه‌های بی‌سیم نسل بعد هستند. زیرا این شبکه‌ها می‌توانند به دلیل افت مسیر کمتر و نیز کاهش اثر عامل سایه افکنی، که ناشی از خصوصیت چند گامی بودن آنهاست، محدوده تحت پوشش وسیع و ظرفیت بالایی را با مصرف توان کم و هزینه پایین در اختیار کاربران قرار دهند. در مقابل این مزایا، این شبکه‌ها با مشکل عدم توسعه پذیری آسان مواجه‌ هستند. زیرا ترافیکی که توسط چند واسط رله می‌شود به عرض باند بیشتر نیاز دارد، دچار تأخیر بیشتر شده و لذا کیفیت سرویس کاهش می‌یابد. بزرگتر کردن فاصله رله‌ها به منظور کاهش تعداد آن‌ها نیز باعث کاهش سرعت لینک‌ها خواهد شد. افزایش تعداد کاربران شبکه نیز منجر به برخورد‌های بیشتر و درنتیجه کاهش بیشتر گذردهی می‌گردد. افزایش ناحیه تحت پوشش شبکه نیز به دلیل احتیاج به رله‌های بیشتر افت گذردهی و افزایش تأخیر را در پی خواهد داشت.بنابراین کارایی مناسب در یک شبکه مش باید از طریق حل یک مسئله بهینه‌سازی که عوامل مؤثر(نظیر تأخیر، گذردهی و …) در آن گنجانده شده باشد دست آید. حل این نوع مسئله در سال‌های اخیر به عنوان یک مسئله NP-Hard توجه زیادی را در حوزه مسائل مربوط به شبکه‌های بی‌سیم مش به خود معطوف کرده است.

در این پایان نامه الگوریتم جدیدی به منظور بهبود زمانبندی متمرکز و تخصیص بهینه پنجره‌های زمانی به گره‌‌‌های شبکه با در نظرگرفتن قابلیت استفاده مجدد از فضای فرکانسی، بارویکرد تضمین تأخیر انتها به انتهای کاربر ارائه شده است. الگوریتم پیشنهادی در این تحقیق برای حل تقریبی مسئله بهینه‌سازی زمان‌بندی، برپایه‌ی الگوریتم ژنتیک است. الگوریتم پیشنهادی قابلیت تطبیق پذیری با پارامتر‌های مختلف(نظیر بازدهی، عدالت و …) بر اساس خواسته‌ی اپراتور را داراست. نتایچ حاصل از پیاده‌سازی موید بهبود نتایج نسبت به روش‌های پیشین است.

 

1-     فصل اول
مقدمه

 

 

 

 

 

 

1-1    مقدمه، چشم انداز شبکه‌های مش بی‌سیم

رواج بیش از حد اینترنت دردنیای ارتباطی امروز به گونه ای بوده است که ساختارهای دستیابی سیم دار پر سرعت

پاسخگوی نیاز بسیاری از مناطق نیستند .تعداد مراکز سرویس دهنده خدمات پر سرعت اینترنت امروزی به نسبت تقاضا بسیار کم است. کابل کشی خطوط پر سرعت برای تمامی این سرویس دهندگان بسیار پر هزینه و زمان بر است . امروزه تکنولوژی‌های جدیدی معرفی شده است تا جایگزین این شبکه های سیم دار شوند. این شبکه های جایگزین ، شبکه‌های بی‌سیم پر سرعت هستند که امکان دسترسی سریع به اینترنت در مواقعی که ساختار شبکه سیم دار به دلیل حجم بالای متقاضی و یا قدیمی بودن شبکه ها ، قادر به پاسخگویی به نیاز کاربران نیست را فراهم می‌آورند و هزینه‌های اضافی مرتبط به روز رسانی ساختار کابل کشی‌ها را از بین می‌برند. سیستم های بی‌سیم سنتی اغلب برای اهداف تجاری درمحل هایی که سرعت و دقت بالا نیاز است استفاده می‌شوند و در موارد شخصی و یا خانه‌ها می‌بایست تکنولوژی ارزان را به کار گرفت. هم اکنون پیشرفت های تکنیکی این امکان را فراهم ساخته اند و فرصت های بسیاری را برای سرویس دهندگان اینترنت ایجاد کرده اند. شبکه‌های مش بی‌سیم [1] (WMN) یکی از فناوری‌های کلیدی و تأثیرگذار طی دهه پیش رو است که نقش بسیار مهمی‌ در نسل‌های آتی شبکه‌های بی‌سیم و سیار ایفا خواهند کرد. به کمک این شبکه‌ها رؤیایی که از دیرباز در ذهن بسیاری از کاربران گوناگون انواع شبکه‌ها در سرتاسر دنیا بوده به تحقق نزدیک‌تر می‌شود؛ و این رویا چیزی نیست جز اتصال به شبکه در هر زمان ، هر لحظه، با نهایت سادگی و کمترین هزینه.

 

 

این شبکه‌ها شامل مسیریاب‌های مش و نیز کاربران مش می‌شوند که در آن مسیریاب‌های مش کمترین تحرک ممکن را دارند و ستون فقرات WMN را شکل می‌دهند. آنها دسترسی به شبکه را هم برای کاربران مش و هم برای کاربران عادی فراهم می‌آورند.

شکل ‏1‑1- شبکه‌ی مش بی‌سیم

شبکه مش بی سیم کاملا منطبق بر ساختار شبکه سیم دار است و هر فرستنده امکان دسترسی کاربران متصل به آن

را به اینترنت فراهم می‌کند و به صورت جزئی از ساختار شبکه عمل خواهد کرد. ترافیک شبکه از بین رله

گذر خواهد کرد و امکان اتصال ایستگاه‌های مختلف را حتی اگر خارج از محدوده شبکه باشند، فراهم می آورد. شبکه‌های مش بی‌سیم انعطاف پذیرترین و کم هزینه ترین روش برای گسترش سرویس‌های پر سرعت اینترنت هستند که به صورت عمده در مصارف شخصی قابل استفاده اند.

هر رله‌ی بی‌سیم در این شبکه به عنوان عنصری از ساختار شبکه است و می‌تواند اطلاعات را از شبکه مش بی‌سیم به مقصد برساند. این نوع شبکه مشکلات وجود موانع در حیطه محیط رادیویی را از بین می‌برد و بسیار ارزان و راحت، شبکه را قابل گسترش می‌کند، زیرا در این ساختار هر رله فقط نیاز به برقراری ارتباط با رله مجاور خود دارد . ترافیک شبکه‌ای در صورت بروز هر مانع ، می‌تواند به سمت رله دیگر تغییر جهت می‌دهد، البته بدون آنکه نیازی به هر گونه تغییر در محل رادیوی مر کزی برای ارتباط بامکان های جغرافیایی دور دست باشد .

از آنجائیکه منطقه تحت پوشش هر نقطه دسترسی می‌تواند در اطراف موانع گسترش یابد، بنابراین تعداد نقاط دسترسی کاهش می یابد.

شبکه های مش بی‌سیم، دارای تکنولوژی ارزان قابل گسترش و برای دسترسی پر سرعت در محدوده های جغرافیایی دور دست مناسب هستند . RoofNet نمونه ای از این شبکه هاست. این شبکه معمولا شامل تعدادی نقاط دسترسی بی‌سیم است که درپنجره ها و پشت بام منازل نصب می شود و بسترهای اطلاعاتی کامپیوترهای خانگی توسط سیم به آنتن ها انتقال می‌یابد و از یک آنتن به آنتن دیگر منتقل می شود تا به یک دروازه[2] اینترنتی برسد.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 657
|
امتیاز مطلب : 1
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :طراحی و بهینه سازی فیلتر میان نگذر دوبانده مایکروویو با سطوح انتخابگر فرکانس

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

طراحی و بهینه سازی فیلتر میان نگذر دوبانده مایکروویو با سطوح انتخابگر فرکانس

 

 

 

استاد راهنما

دکتر میرصالحی

تیر   1391


تکه هایی از متن به عنوان نمونه :

چکیده

 

در این پروژه طراحی فیلتر دو بانده مایکروویو با دو ساختار متفاوت با سطوح انتخابگر فرکانس بررسی و معایب و مزایای این دو ساختار بیان شده است. در ساختار اول از دو لایه سطح انتخابگر فرکانس با عنصر حلقه دایروی و در ساختار دوم از یک لایه سطح انتخابگر فرکانس با دو عنصر حلقه دایروی ادغام شده، استفاده شده است. در بخش اصلی پروژه طراحی یک فیلتر دوبانده میان­نگذر مایکروویو با ساختار نوع دوم در باند فرکانسی GHz 7 – 3 برای کاربردهایی مثل عایق­های تداخل الکترومغناطیس انجام شده و نشان داده شده است که پاسخ فرکانسی فیلتر طراحی شده نسبت به تغییرات زاویه تابش و قطبش موج تابشی پایدار است. از ویژگی­های این فیلتر کم حجم بودن و مقرون به صرفه بودن آن می­باشد. چون فرمول دقیقی برای بدست آوردن مشخصات مناسب این فیلترها وجود ندارد، تاثیر پارامترهای یک سلول واحد از هر کدام از فیلترها به وسیله نرم­افزار CST بررسی شد. این پارامترها شامل دوره تناوب ساختار (p)، شعاع متوسط حلقه دایروی (r) و ضخامت حلقه دایروی (w) می­باشند. از شبیه­سازی­های انجام شده، نتایج زیر حاصل شد:

  • مهمترین عامل برای تغییر پهنای باند فیلتر، تغییر w است.
  • حساسیت فرکانس تشدید فیلتر به پارامترهای r و p نسبت به w بیشتر است.
  • تاثیر پارامتر r در تغییر فرکانس تشدید ناشی از زوایای تابش صفر و 60 درجه، بیشتر از پارامترهای دیگر (r وw) است.

 

کلمات کلیدی: سطوح انتخابگر فرکانس، فیلتر دوبانده، فیلتر میان­نگذر مایکروویو، تئوری فلوکه

 

 

فهرست مطالب

 

فصل اول-مقدمه                                                                                                                         1

فصل دوم-سطوح انتخابگر فرکانس                                                                                           4

2-1 معرفی سطوح انتخابگر فرکانس   5

2-1-1 چگونگی کنترل پاسخ فرکانسی سطوح انتخابگر فرکانس   6

2-1-1-1 شکل سطوح انتخابگر فرکانس   6

2-1-1-2 ضریب هدایت اجزاء   7

2-1-1-3 زیر لایه دی الکتریک   8

2-1-1-4 زاویه تابش موج مسطح   9

2-1-2 جلوگیری از لوب ساینده   10

2-2 تحریک سطوح انتخابگر فرکانس   11

2-3 آرایه های مکمل   11

2-4 چگونگی تشکیل منحنی تشدید   12

2-4-1 سطوح متناوب پیاپی بدون دی الکتریک                                                                                         13

2-4-2 یک سطح متناوب با لایه های دیالکتریک   13

2-5 کاربردهای سطوح انتخابگر فرکانس   14

2-5-1 کاهش تداخلات الکترومغناطیسی   14

2-5-2 فیلترهای چند بانده   15

2-5-2-1 استفاده از چند سطح انتخابگر فرکانسی پیدرپی   16

2-5-2-2 استفاده گروهی از عناصر در یک سلول واحد   17

 

2-5-2-3 استفاده از چند عنصر ادغام شده در هم   18

2-5-2-4 استفاده از اجزاء مشدد حلقوی مربعی   19

 

فصل سوم-تئوری پایه­ای ساختارهای متناوب فضایی                                                               22

3-1 سری فلوکه و توابع مدی فلوکه   23

3-2 مودهای قابل انتشار ومیرا شونده فلوکه   26

 

فصل چهارم-طراحی فیلتر یک بانده مایکروویو                                                                        31

4-1 طراحی فیلتر میان نگذر برای کاربردهای باند مایکروویو                                                     32

4-1-1 شکل جزء   35

4-1-1-1 تاثیر ابعاد عنصر   37

4-1-1-1-1 پارامترهای تعیین کننده ابعاد عنصر   39

4-1-2 تاثیر دی الکتریک        49

 

فصل پنجم-طراحی فیلتر دو بانده مایکروویو                                                                       53

5-1 استفاده از دولایه سطح انتخابگر فرکانس پی درپی   55

5-2 استفاده از یک لایه سطح انتخابگر فرکانس با دو عنصر ادغام شده[27]   58

 

فصل ششم-نتیجه­گیری و پیشنهادها                                                                                    62

6-1 نتیجه گیری   63

6-2 پیشنهادها   64

مراجع                                                                                                                                    66


فصل اول

مقدمه

 

سطوح انتخابگر فرکانس[1] ساختارهای متناوب مسطحی هستند که معمولا از تکه[2]‌های هم اندازه یا پنجره‌هایی از جنس هادی که به صورت متناوب در یک یا دو بعد تکرار می‌شوند، تشکیل شده‌اند. قدیمی­ترین مرجع در مورد سطوح متناوب به ثبت اختراع مارکونی[3] و فرانکلین[4] در سال 1919 برای ساخت انعکاس دهنده سهموی[5] برمی­گردد. بررسی ساختارهای متناوب تا سال 1960 که در آن زمان توانایی این ساختارها در کاربردهای نظامی کشف شد، پی­گیری نشد. از سال 1960 به بعد، سطوح انتخابگر فرکانس به طور گسترده­ای در زمینه طراحی آنتن­ها، رادار، فیلترهای فضایی، قطبی­کننده، ردوم و غیره مورد استفاده قرار گرفت. در بیشتر کاربردها، مثل مخابرات ماهواره­ای سطوح انتخابگر فرکانسی برای طراحی آنتن­های بازتابنده دوگانه[6] استفاده می­شوند. ساخت چنین ساختارهایی در طول موج­های مایکروویو و در طراحی آنتن ها ساده است ولی در طول موج های مادون قرمز و نوری به این علت که اندازه اجزاء به کار رفته در ساختار باید در حد میکرومتر و حتی کوچکتر باشد، مشکل است و نیاز به روش­های لیتوگرافی پیشرفته دارد[1].

سطوح انتخابگر فرکانس بسته به شکل اجزاء به کار رفته در ساختار و زیرلایه، دارای پاسخ‌های فرکانسی متفاوتی می­باشند. این سطوح به صورت فیلترهای الکترومغناطیسی­ای عمل می­کنند که پاسخ فرکانسی آنها علاوه بر فرکانس به زاویه تابش و قطبش موج تابشی بستگی دارد. وقتی یک موج الکترومغناطیسی به این سطوح برخورد می­کند در یک طیف فرکانسی موج را عبور می­دهند و در طیف فرکانسی دیگر موج را منعکس می­کنند؛ بنابراین می­توان آنها را به عنوان فیلترهای بالا گذر، پایین گذر، میان گذر و میان نگذر طراحی کرد.

در این پایان­نامه در فصل 2 شرح مختصری در مورد سطوح انتخابگر فرکانس و عوامل موثر در طراحی این ساختارها داده می­شود و در ادامه این فصل کاربردهای این ساختارها در بازه­های مختلف فرکانسی بررسی می­شوند. یکی از این کاربردها، طراحی فیلترهای چندبانده مایکروویو است که در این فصل ساختارهای متفاوتی که در سالهای گذشته پیشنهاد شده، بررسی ­می­شود.­ در فصل 3 تئوری پایه­ای ساختارهای متناوب فضایی بررسی می­شود. در فصل 4 فیلترهای یک بانده مایکروویو طراحی شده و با نرم­افزار CST شبیه­سازی­های مربوطه انجام می­شود. در این فصل پارامترهای مهم برای رسیدن به مشخصات مطلوب فیلتر یک بانده میان­نگذر بررسی شده است. در فصل 5 دو روش برای طراحی فیلتر میان­نگذر دوبانده تحلیل و بررسی شده و نتایج طراحی با بیان معایب و مزایا آورده شده است و سرانجام در فصل 6 نتایج و پیشنهادها برای ادامه پروژه ارائه خواهد شد.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 801
|
امتیاز مطلب : 3
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :طراحی و ساخت فیلترمیان¬گذر مایکرویو با استفاده از ساختار¬های متامتریالی

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه کارشناسی ارشد در رشته مهندسی برق – مخابرات (میدان)

طراحی و ساخت فیلترمیانگذر مایکرویو با استفاده از ساختارهای متامتریالی

استاد راهنما
دکتر عباس علیقنبری

بهمن 1392

تکه هایی از متن به عنوان نمونه :

چکیده
طراحی و ساخت فیلترمیانگذر مایکرویو با استفاده از ساختارهای متامتریالی

به کوشش
وحید قلیپور

یکی از اساسیترین قطعات مورد استفاده در سیستمهای مخابراتی که وجود آن نقش مهم بر عملکرد سیستم میگذارد فیلتر است. در کاربردهای مخابرات بیسیم، مؤلفه‌های فرکانسی که توسط گیرندهها دریافت می‌شوند لازم است از هم تفکیک شوند که این کار توسط فیلترها انجام می‌شود. هر چه پاسخ فیلتر مورد نظر بهتر باشد سیگنال خروجی میتواند باکیفیت بهتری استخراج شود. از طرفی با توجه به اهمیت ابعاد در سیستمهای مخابراتی، فیلتر مورد نظر باید علاوهبر پاسخ خوب، همزمان دارای ابعاد کوچکی نیز باشد.
فیلترهای متامتریالی که بر روی تکنولوژیهای مایکرواستریپ و موجبر همصفحه (CPW) ایجاد می‌شوند میتوانند هم دارای پاسخ فرکانسی خوب و هم دارای ابعاد کوچک به طور همزمان باشند. با استفاده از ساختارهای تشدیدی متامتریالها، به دلیل انتخاب‌کنندگی فرکانس، میتوانند هم پهنای باند باریک و هم صفر انتقال در فرکانس‌های مطلوب ایجاد کنند. همچنین با استفاده از ساختارهای غیرتشدیدی که اصطلاحاً CRLH نامیده می‌شوند میتوان به پهنای باند وسیع دست یافت. این ساختارهای غیرتشدیدی نیز میتوانند با المان‌های تشدیدی ترکیب‌شده و پاسخ مناسب ایجاد کنند.
در این پایان‌نامه کارهای مختلفی از قبیل فیلتر CRLH با استفاده از المانهای ایجادکننده صفر انتقال در لبههای باند گذر و ساختار CRLH چهار بانده با پهنای باند 2-6 GHz  با صفرهایی در لبههای باند گذر مورد بررسی و ارائه می‌شوند. در این کار شبیه‌سازی‌های تمامموج برای ساختارهای ارائه‌شده، با استفاده از نرمافزار CST صورت گرفته است. پاسخ فرکانسی سه فیلتر ساخته‌شده و نتایج حاصل از آن‌ها نیز برای نمایش عملکرد درست فیلترهای شبیه‌سازی شده آورده شده است.

کلمات کلیدی: فیلتر متامتریالی، ساختار تشدیدی، ساختار غیر تشدیدی، مایکرواستریپ، صفر انتقال

فهرست مطالب

عنوان                                                                                                                                 صفحه
فصل اول: اصول اولیه در متامتریال‌ها
1-1- معرفی    3
1-2- زمینه پیدایش و توصیف تجربی    4
1-3- روش خط انتقال    8
1-3-1- خطوط انتقال متامتریالیComposit Righ-Left Handed  (CRLH)    9
1-3-2- مدل خط انتقال ایدهآل    10
1-4- جمع بندی    17

فصل دوم:  نظریه‌ها و مفاهیم اولیه فیلترها
2-1- مقدمه    20
2-2-  توابع تبدیل    20
2-2-1- تعاریف کلی    20
2-2-2-  قطب‌ها و صفرها روی صفحه مختلط     21
2-2-3- پاسخ باترورث    22
2-2-4- پاسخ چبی شو    23
2-3- فیلترهای نوع پایین گذر و المان‌های آن    25
2-4-  تبدیلات المانی و فرکانسی    25
2-5-  معکوس کننده‌های امیتانسی    29
2-5-1- تعریف معکوس کننده‌های امیتانسی، امپدانسی و ادمیتانسی    29
2-5-2- فیلترها با معکوس کننده‌های ادمیتانسی    30
2-6- تبدیل ریچارد    35
2-6-1- فیلترها با خطوط کوپل‌شده     39
2-7- پراکندگی و ضریب کیفیت بی باری     44
2-7-1- ضرایب کیفیت بی باری المان‌های راکتیو پر اتلاف    44
2-8- جمع‌بندی    46

فصل سوم:  خطوط انتقال متامتریال و کارهای انجام‌شده در این زمینه
3-1- خطوط CRLH غیرتشدیدی    48
3-2- خطوط CRLH تشدیدی    49
3-2-1- خطوط CRLH تشدیدی با استفاده از SRRها    50
3-2-2- خطوط CRLH تشدیدی با استفاده از CSRRها    51
3-2-3- فیلترهای UWB مبتنی بر سلولهای بالانس شده    54
3-3- فیلترهای متامتریالی مبتنی بر تشدیدکننده‌های امپدانس پلهای    58
3-4- خط انتقال تعمیم‌یافته با ضریب شکست منفی (NRI-TL)    61
3-4-1- تحلیل تک سلول NRI-TL شکل ‏314    63
3-4-2- حذف باندهای توقف    64
3-4-3- ملاحظات تطبیق    64
3-4-4- مفهوم چهار بانده و چند بانده با المان‌های پسیو    65
3-4-5- کاربردهای فیلتری    66
3-4-6- کارهای انجام‌شده در این زمینه    67
3-5- جمع‌بندی    69

فصل چهارم:  کارهای انجام‌شده در این پایان‌نامه
4-1- مقدمه    72
4-2- ساختارهای میان‌گذر 3-4 GHz و 2-4 GHz    73
4-2-1- معرفی    73
4-2-2- ساختارهای ایجادکننده صفر انتقال    74
4-2-2-1- استاب اتصال کوتاه شده     74
4-2-2-2- استاب باز    75
4-2-2-3- خط کوپل‌شده اتصال کوتاه شده    76
4-2-3- ساختار اصلاح‌شده خط کوپل‌شده اتصال کوتاه    77
4-2-4- فیلترمیان‌گذر با استفاده از ساختار نوع A    83
4-2-2-4- بررسی متامتریالی بودن ساختار ارائه‌شده    86
4-2-5- فیلتر میان‌گذر با استفاده از ساختار نوع B (با پنجره در زمین)    90
4-2-5-1- بررسی متامتریالی بودن ساختار ارائه‌شده     93
4-2-6-  تک‌سلول چهار بانده    93
4-3- جمع بندی     99

فصل پنجم:  نتیجه‌گیری و پیشنهاد‌ها
5-1- نتیجه گیری    102
5-2- پیشنهاد‌ها    103

فهرست منابع ………………………………………………………………………………………………………….103

 

فصل اول

⦁    اصول اولیه در متامتریال‌ها

⦁    معرفی

متامتریالهای (MTMs) الکترومغناطیسی عمدتاً به عنوان ساختارهای الکترومغناطیسی همگن مصنوعی با خواص غیرمعمول که در طبیعت به طور آماده وجود ندارند، شناخته میشوند [1] . برای دستیابی به ساختار همگن باید میانگین اندازه هر سلول  p، خیلی کوچک‌تر از طول موج هدایتی gλ  باشد. بنابراین، این میانگین اندازه سلول باید حداقل کمتر یک چهارم طول موج (4/gλ( باشد.  4/gλ P= به عنوان شرطی برای دستیابی به یک محیط به طور موثر همگن در نظر گرفته می‌شود.
از نظر الکترومغناطیسی، وقتی اندازه هر سلول نسبت طول موج هدایتی خیلی کوچک‌تر باشد، دراین حالت ساختار از لحاظ الکترومغناطیسی در طول مسیر انتشار یکنواخت است بنابراین، ماده با پارامترهای تشکیل‌دهنده گذردهی الکتریکی  و نفوذپذیری مغناطیسی   در نظر گرفته می‌شود. به عبارت دیگر ، فعل و انفعالهای الکترومغناطیسی میتواند در سطح میکروسکوپی از طریق اتمهای ماده یا از طریق سلولهایی که اندازه و فاصله کوچک دارند انجام شود[2]  .رابطه بین  و با ضریب شکست n ( )، چهار حالت ممکن را میتواند ایجاد کند که در شکل ‏11 این حالات نشان داده‌شده است. از شکل ‏11 پیداست که محیط1 با  و   مشابه حالت راستگرد (RH) مرسوم با انتشار موج مستقیم است. وقتی یکی از یا  منفی است هیچ موج انتشاری به وجود نمیآید. همچنین حالت دیگر انتشاری برای زمانی که هم و هم   به طور همزمان منفی هستند نیز وجود دارند در نتیجه، یک محیط با ضریب شکست منفی حاصل می‌شود. برای موادی که دارای چنین خاصیتی هستند متامتریالهای چپگرد(LH)    گفته می‌شود.

⦁    زمینه پیدایش و توصیف تجربی

وجود متامتریال‌های LH  اولین بار توسط ویکتور وسالگو در سال 1967 با معرفی مادهای که قابلیت عبور موج الکترومغناطیسی با بردار موج سهتایی چپگرد  را دارد، ارائه شد[3] . بردار موج سهتایی چپگرد به صورت مقایسه‌ای در شکل ‏12  نشان داده‌شده است.

شکل ‏11-  نمودار گذردهی-نفوذپذیری ( ) و تأثیر   و   بر ضریب شکست  . در این شکل E:انرژی،   و  است. در اینجا   و   به ترتیب گذردهی و نفوذپذیری نسبی هستند و   و   گذردهی و نفوذپذیری هوای آزاد به صورت   و   تعریف می‌شوند.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 514
|
امتیاز مطلب : 4
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :طراحی و ساخت فیلترمیان¬گذر مایکرویو با استفاده از ساختار¬های متامتریالی

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه کارشناسی ارشد در رشته مهندسی برق – مخابرات (میدان)

طراحی و ساخت فیلترمیانگذر مایکرویو با استفاده از ساختارهای متامتریالی

استاد راهنما
دکتر عباس علیقنبری

بهمن 1392

تکه هایی از متن به عنوان نمونه :

چکیده
طراحی و ساخت فیلترمیانگذر مایکرویو با استفاده از ساختارهای متامتریالی

به کوشش
وحید قلیپور

یکی از اساسیترین قطعات مورد استفاده در سیستمهای مخابراتی که وجود آن نقش مهم بر عملکرد سیستم میگذارد فیلتر است. در کاربردهای مخابرات بیسیم، مؤلفه‌های فرکانسی که توسط گیرندهها دریافت می‌شوند لازم است از هم تفکیک شوند که این کار توسط فیلترها انجام می‌شود. هر چه پاسخ فیلتر مورد نظر بهتر باشد سیگنال خروجی میتواند باکیفیت بهتری استخراج شود. از طرفی با توجه به اهمیت ابعاد در سیستمهای مخابراتی، فیلتر مورد نظر باید علاوهبر پاسخ خوب، همزمان دارای ابعاد کوچکی نیز باشد.
فیلترهای متامتریالی که بر روی تکنولوژیهای مایکرواستریپ و موجبر همصفحه (CPW) ایجاد می‌شوند میتوانند هم دارای پاسخ فرکانسی خوب و هم دارای ابعاد کوچک به طور همزمان باشند. با استفاده از ساختارهای تشدیدی متامتریالها، به دلیل انتخاب‌کنندگی فرکانس، میتوانند هم پهنای باند باریک و هم صفر انتقال در فرکانس‌های مطلوب ایجاد کنند. همچنین با استفاده از ساختارهای غیرتشدیدی که اصطلاحاً CRLH نامیده می‌شوند میتوان به پهنای باند وسیع دست یافت. این ساختارهای غیرتشدیدی نیز میتوانند با المان‌های تشدیدی ترکیب‌شده و پاسخ مناسب ایجاد کنند.
در این پایان‌نامه کارهای مختلفی از قبیل فیلتر CRLH با استفاده از المانهای ایجادکننده صفر انتقال در لبههای باند گذر و ساختار CRLH چهار بانده با پهنای باند 2-6 GHz  با صفرهایی در لبههای باند گذر مورد بررسی و ارائه می‌شوند. در این کار شبیه‌سازی‌های تمامموج برای ساختارهای ارائه‌شده، با استفاده از نرمافزار CST صورت گرفته است. پاسخ فرکانسی سه فیلتر ساخته‌شده و نتایج حاصل از آن‌ها نیز برای نمایش عملکرد درست فیلترهای شبیه‌سازی شده آورده شده است.

کلمات کلیدی: فیلتر متامتریالی، ساختار تشدیدی، ساختار غیر تشدیدی، مایکرواستریپ، صفر انتقال

فهرست مطالب

عنوان                                                                                                                                 صفحه
فصل اول: اصول اولیه در متامتریال‌ها
1-1- معرفی    3
1-2- زمینه پیدایش و توصیف تجربی    4
1-3- روش خط انتقال    8
1-3-1- خطوط انتقال متامتریالیComposit Righ-Left Handed  (CRLH)    9
1-3-2- مدل خط انتقال ایدهآل    10
1-4- جمع بندی    17

فصل دوم:  نظریه‌ها و مفاهیم اولیه فیلترها
2-1- مقدمه    20
2-2-  توابع تبدیل    20
2-2-1- تعاریف کلی    20
2-2-2-  قطب‌ها و صفرها روی صفحه مختلط     21
2-2-3- پاسخ باترورث    22
2-2-4- پاسخ چبی شو    23
2-3- فیلترهای نوع پایین گذر و المان‌های آن    25
2-4-  تبدیلات المانی و فرکانسی    25
2-5-  معکوس کننده‌های امیتانسی    29
2-5-1- تعریف معکوس کننده‌های امیتانسی، امپدانسی و ادمیتانسی    29
2-5-2- فیلترها با معکوس کننده‌های ادمیتانسی    30
2-6- تبدیل ریچارد    35
2-6-1- فیلترها با خطوط کوپل‌شده     39
2-7- پراکندگی و ضریب کیفیت بی باری     44
2-7-1- ضرایب کیفیت بی باری المان‌های راکتیو پر اتلاف    44
2-8- جمع‌بندی    46

فصل سوم:  خطوط انتقال متامتریال و کارهای انجام‌شده در این زمینه
3-1- خطوط CRLH غیرتشدیدی    48
3-2- خطوط CRLH تشدیدی    49
3-2-1- خطوط CRLH تشدیدی با استفاده از SRRها    50
3-2-2- خطوط CRLH تشدیدی با استفاده از CSRRها    51
3-2-3- فیلترهای UWB مبتنی بر سلولهای بالانس شده    54
3-3- فیلترهای متامتریالی مبتنی بر تشدیدکننده‌های امپدانس پلهای    58
3-4- خط انتقال تعمیم‌یافته با ضریب شکست منفی (NRI-TL)    61
3-4-1- تحلیل تک سلول NRI-TL شکل ‏314    63
3-4-2- حذف باندهای توقف    64
3-4-3- ملاحظات تطبیق    64
3-4-4- مفهوم چهار بانده و چند بانده با المان‌های پسیو    65
3-4-5- کاربردهای فیلتری    66
3-4-6- کارهای انجام‌شده در این زمینه    67
3-5- جمع‌بندی    69

فصل چهارم:  کارهای انجام‌شده در این پایان‌نامه
4-1- مقدمه    72
4-2- ساختارهای میان‌گذر 3-4 GHz و 2-4 GHz    73
4-2-1- معرفی    73
4-2-2- ساختارهای ایجادکننده صفر انتقال    74
4-2-2-1- استاب اتصال کوتاه شده     74
4-2-2-2- استاب باز    75
4-2-2-3- خط کوپل‌شده اتصال کوتاه شده    76
4-2-3- ساختار اصلاح‌شده خط کوپل‌شده اتصال کوتاه    77
4-2-4- فیلترمیان‌گذر با استفاده از ساختار نوع A    83
4-2-2-4- بررسی متامتریالی بودن ساختار ارائه‌شده    86
4-2-5- فیلتر میان‌گذر با استفاده از ساختار نوع B (با پنجره در زمین)    90
4-2-5-1- بررسی متامتریالی بودن ساختار ارائه‌شده     93
4-2-6-  تک‌سلول چهار بانده    93
4-3- جمع بندی     99

فصل پنجم:  نتیجه‌گیری و پیشنهاد‌ها
5-1- نتیجه گیری    102
5-2- پیشنهاد‌ها    103

فهرست منابع ………………………………………………………………………………………………………….103

 

فصل اول

⦁    اصول اولیه در متامتریال‌ها

⦁    معرفی

متامتریالهای (MTMs) الکترومغناطیسی عمدتاً به عنوان ساختارهای الکترومغناطیسی همگن مصنوعی با خواص غیرمعمول که در طبیعت به طور آماده وجود ندارند، شناخته میشوند [1] . برای دستیابی به ساختار همگن باید میانگین اندازه هر سلول  p، خیلی کوچک‌تر از طول موج هدایتی gλ  باشد. بنابراین، این میانگین اندازه سلول باید حداقل کمتر یک چهارم طول موج (4/gλ( باشد.  4/gλ P= به عنوان شرطی برای دستیابی به یک محیط به طور موثر همگن در نظر گرفته می‌شود.
از نظر الکترومغناطیسی، وقتی اندازه هر سلول نسبت طول موج هدایتی خیلی کوچک‌تر باشد، دراین حالت ساختار از لحاظ الکترومغناطیسی در طول مسیر انتشار یکنواخت است بنابراین، ماده با پارامترهای تشکیل‌دهنده گذردهی الکتریکی  و نفوذپذیری مغناطیسی   در نظر گرفته می‌شود. به عبارت دیگر ، فعل و انفعالهای الکترومغناطیسی میتواند در سطح میکروسکوپی از طریق اتمهای ماده یا از طریق سلولهایی که اندازه و فاصله کوچک دارند انجام شود[2]  .رابطه بین  و با ضریب شکست n ( )، چهار حالت ممکن را میتواند ایجاد کند که در شکل ‏11 این حالات نشان داده‌شده است. از شکل ‏11 پیداست که محیط1 با  و   مشابه حالت راستگرد (RH) مرسوم با انتشار موج مستقیم است. وقتی یکی از یا  منفی است هیچ موج انتشاری به وجود نمیآید. همچنین حالت دیگر انتشاری برای زمانی که هم و هم   به طور همزمان منفی هستند نیز وجود دارند در نتیجه، یک محیط با ضریب شکست منفی حاصل می‌شود. برای موادی که دارای چنین خاصیتی هستند متامتریالهای چپگرد(LH)    گفته می‌شود.

⦁    زمینه پیدایش و توصیف تجربی

وجود متامتریال‌های LH  اولین بار توسط ویکتور وسالگو در سال 1967 با معرفی مادهای که قابلیت عبور موج الکترومغناطیسی با بردار موج سهتایی چپگرد  را دارد، ارائه شد[3] . بردار موج سهتایی چپگرد به صورت مقایسه‌ای در شکل ‏12  نشان داده‌شده است.

شکل ‏11-  نمودار گذردهی-نفوذپذیری ( ) و تأثیر   و   بر ضریب شکست  . در این شکل E:انرژی،   و  است. در اینجا   و   به ترتیب گذردهی و نفوذپذیری نسبی هستند و   و   گذردهی و نفوذپذیری هوای آزاد به صورت   و   تعریف می‌شوند.

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 566
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()
نوشته شده توسط : admin

عنوان :طراحی و شبیه سازی گیرنده‌ی رادار دهانه ترکیبی برای پهپاد

 

برای رعایت حریم خصوصی نام نگارنده درج نمی شود

پایان‌نامه دوره کارشناسی ارشد مهندسی برق-مخابرات سیستم

 

طراحی و شبیه سازی گیرنده‌ی رادار دهانه ترکیبی برای پهپاد

 

 

اساتید راهنما:

دکتر رمضانعلی صادق‌زاده

دکتر رضا فاطمی مفرد

 

 

 

زمستان 1391

تکه هایی از متن به عنوان نمونه :

چکیده

در این پایان‌نامه هدف طراحی و شبیه‌سازی رادار دهانه ترکیبی به منظور بکارگیری در پهپاد است. در طی این پایان‌نامه به بررسی روابط و چگونگی عملکرد برخی الگوریتم‌های بکار رفته در این رادارها ، مانند پردازش داپلر و الگوریتم‌های جبران‌سازی پرداخته و سعی شده ‌است که روابط مربوط به طراحی کلان این رادار ارائه گردد. بر اساس روابط و نیازمندی مطرح شده، رادار دهانه ترکیبی طراحی و نتایج حاصل از شبیه سازی ارائه شده است. همچنین در طی این تحقیق الگوریتمی جدید برای جبران‌سازی حرکت غیر ایده‌ال سکوی حامل پیشنهاد شده است. اساس این الگوریتم تخمین مسیر حرکت رادار با تقریب‌های خطی است. تئوری و روابط این الگوریتم استخراج و با شبیه سازی و مقایسه با مسیرایده‌ال صحت عملکرد آن بررسی شده است.

 

 

کلید واژه: SAR ، FMCW، RDA ، RCM، جبرانسازی حرکت

 

 

 

 

 

 

 

 

 

فهرست مطالب

عنوان                                                  صفحه

 

فهرست شکل‌ها ت‌

فهرست علایم و نشانه‌ها خ‌

فصل1-  مقدمه 1

1-1- پیشگفتار 1

1-2- تاریخچه 4

1-3- انواع SAR 5

1-3-1- Strip-Map SAR 5

1-3-2- Spot SAR 5

1-3-3- Scan SAR 8

1-4- مروری بر کارهای انجام شده 10

1-5- هدف از انجام تحقیق 11

1-6- نوآوری تحقیق 12

1-7- ساختار تحقیق 12

فصل2-  مدل و روابط طراحی 13

2-1- تفکیک‌پذیری در راستای برد 14

2-2- پالس مدوله شده با سیگنال LFM 16

2-3- تفکیک‌پذیری در راستای زاویه سمت 19

2-4- مقایسه آرایه‌های واقعی با آرایه‌های مصنوعی 23

2-5- هندسه دید از کنار برای رادار دهانه ترکیبی 25

2-6- ویژگی‌های سیگنال SAR 28

2-7- طیف سیگنال 30

2-8- معیار انتخاب فرکانس تکرار پالس 36

2-9- معادله رادار در SAR 37

فصل3-  الگوریتم های تشکیل تصویر 41

3-1- الگوریتم RDA 42

3-2- الگوریتم CSA 47

3-2-1- شرحCS 49

3-2-2- بکارگیری CS در RCMC 53

3-3- جبران سازی‌حرکت 56

فصل4-  طراحی سیستمی رادار دهانه ترکیبی 59

4-1- مدولاسیون موج پیوسته‌ی LFM 60

4-2- الگوریتم پیشنهادی برای جبران‌سازی حرکت 61

4-2-1- استفاده از مسیر تقریب خطی در جبران‌سازی مسیر حرکت حامل 65

4-3- نیازمندی‌های طراحی 66

4-4- باند فرکانسی 68

4-5- فرستنده و گیرنده 71

4-5-1- فیلتر های گیرنده 72

4-5-2- نمونه برداری 76

4-5-3- سیگنال به نویز گیرنده 79

4-5-4- حساسیت گیرنده 81

4-6- بلوک دیاگرام سیستمی 82

4-7- واحد STC 85

4-8- حجم حافظه‌ی مورد نیاز 86

4-9- پردازش سیگنال 87

فصل5-  شبیه سازی و نتایج 89

5-1- شبیه سازی و نتایج الگوریتم RDA برای سه هدف نقطه‌ای 89

5-2- مدل اهداف 97

5-3- استخراج تصویر در محیط نویزی 98

5-4- شبیه سازی الگوریتم پیشنهادی برای جبرانسازی خطای حرکت 101

5-5- مسیر دو پاره خطی 103

5-5-1- مسیر چند پاره خطی 105

5-5-2- مسیرسینوسی 107

فصل6-  نتیجه گیری 115

6-1- پیشنهادات 116

فهرست مراجع‌ 119

واژه نامه‌ی انگلیسی به فارسی 123

واژه نامه‌ی فارسی به انگلیسی 125

 

فصل1-    مقدمه

1-1- پیشگفتار

سیستم‌های SAR[1]برای تهیه‌ی عکس‌های دو بعدی و سه بعدی با کیفیت بالا از عوارض زمین، در هر شرایط آب وهوائی بکارمی‌روند. تصویر شکل ‏1-1 نمونه‌ای از عکس تهیه شده توسط رادار SAR است. همانطور که ملاحظه می‌شود تصویر تهیه شده توسط رادار SAR، متفاوت از تصاویر اپتیکی است. بدست آوردن اطلاعات از این تصاویر نیاز به مهارت است. در حقیقت تصویر تشکیل شده توسط رادار SAR استخراج پروفایل [2]RCS سطح زمین است. در تصویر تهیه شده توسط SAR ، هرجا که RCS سطح زمین بیشتر بوده تصویر روشن‌تر و برعکس برای نقاطی با RCS

کمتر، تصویر تاریک تر است. در این سیستم‌ها رادار بر روی یک هواپیما یا یک ماهواره که سکو[3]

شکل ‏1-1- تصویر اپتیکی (تصویرسمت چپ)و تصویر تهیه شده توسط SAR(تصویر سمت راست) از یک مکان

نامیده خواهد شد، سوار می‌شود. به خاطر حجم بسیار بالای پردازش سیگنال مورد نیاز برای سیستم SAR معمولا پس از جمع آوری سیگنال‌های لازم توسط رادار، پردازش و استخراج تصویر در ایستگاه زمینی صورت می‌گیرد.

تشکیل تصویر از سطح زمین نیازمند داشتن حد تفکیک‌پذیری[4] مناسب در دو بعد عمود بر هم(برد[5] و متقاطع برد[6]) است. تفکیک ‌پذیری در راستای برد با بکارگیری سیگنال با پهنای باند بالا، قابل دستیابی است. در بعد متقاطع ، حد تفکیک‌پذیری به طول آنتن وابسته است. برای داشتن تفکیک‌پذیری بالا در این بعد، آنتی با طول فیزیکی بزرگ نیاز است تا انرژی دریافتی را در یک پرتو باریک متمرکز کند. پهنای پرتو آنتن در راستای سمت[7] یا بعبارتی بعد متقاطع بر برد، حد تفکیک پذیری را تعیین می‌کند. در شکل ‏1-2 رابطه بین حد تفکیک پذیری در سمت با پهنای پرتو آنتن نشان داده شده‌است.حد تفکیک پذیری در سمت به کمترین فاصله بین دو هدف در سمت اطلاق می‌شود که آن دو هدف توسط رادار از هم قابل تمایز باشند. پهنای پرتو در آنتن ، با توزیع جریان یکنواخت از رابطه زیر بدست می‌آید[1]:

(‏1‑1)

در این رابطه برابر با طول موج کاری آنتن و طول روزنه آنتن است. بعنوان مثال برای داشتن تفکیک‌پذیری 1m ، در فاصله 10km برای راداری در باند x ( ) به آنتی با طول 300m نیاز خواهیم داشت! که با توجه به محدودیت‌های فیزیکی امکان پذیر نیست. پس نیازمند به روشی هستیم که در طیِ طولِ مورد نیاز، داده های لازم را جمع آوری کرده و سپس با پردازش

شکل ‏1-2- رابطه بین حد تفکیک پذیری در سمت با پهنای پرتو آنتن

 

این داده‌ها آنتن دهانه ترکیبی را پیاده سازی نماید. این روش اساس کار رادار های دهانه ترکیبی است.

کیفیت عکس‌های تهیه شده توسط SAR، با تفکیک‌پذیری سلولی در سطح زمین تعیین می‌شود. تفکیک پذیری سلولی، با تفکیک‌پذیری سمت و تفکیک‌پذیری فاصله مشخص می‌شود. هر سلول در سطح زمین، بیانگر یک پیکسل از تصویر SAR است. عوامل دیگری که که به غیر از محدودیت‌های سیستمی و فیزیکی بر تفکیک پذیری سلولی تاثیر دارد عبارت است از [2]:

1) اندازه نقشه‌ای که قرار است تهیه گردد

2) عوارضی که قرار است در تصویر بدست‌آمده معلوم باشند (بعنوان مثال در نقشه آیا قرار است تنها جاده‌ها و کوه‌ها و عوارض بزرگ زمین معلوم باشد ویا جزئیات بیشتری مانند ساختمان‌ها و وسایل نقلیه و … مد نظر است)

3) هزینه در نظر گرفته شده برای طرح

در رادار SAR برای داشتن پالس باریک در برد از مدولاسیون‌ فرکانسی استفاده می‌شود. بنابراین فرکانس سیگنال در طی زمان تغییر می‌یابد. در سنسورهای نوری وقتی سنسور به هدف نزدیک باشد در بعد متقاطع، اطلاعات بیشتری را از هدف می‌توان استخراج نمود. اما در سیستم‌های SAR اینگونه نیست چراکه پهنای باند در بعد متقاطع مستقل از فاصله و متناسب با زمان پرتو افکنی است.

[1] Synthetic Aperture Radar

[2] Radar Cross Section

[3] Platform

[4] Resolution

[5] Range

[6] Cross Range

[7] Azimuth

***ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است***

برای دانلود پایان نامه اینجا را کلیک کنید.



لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 672
|
امتیاز مطلب : 5
|
تعداد امتیازدهندگان : 1
|
مجموع امتیاز : 1
تاریخ انتشار : سه شنبه 5 مرداد 1395 | نظرات ()